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Abstract—The escalating global energy crisis and the in-
creasing CO2 emissions have necessitated the optimization of
energy efficiency. The proliferation of Internet of Things (IoT)
devices, expected to reach 100 billion by 2030, contributed to
this energy crisis and subsequently to the global CO2 emissions
increase. Concomitantly, climate and energy targets have paved
the way for an escalating adoption of solar photovoltaic power
generation in residences. The IoT integration into home energy
management systems holds the potential to yield energy and
peak demand savings. Optimizing device planning to mitigate
CO2 emissions poses significant challenges due to the complexity
of user-defined preferences and consumption patterns. In this
paper, we propose an innovative IoT data platform, coined
Sustainable Energy Management Framework (SEMF), which aims
to balance the trade-off between the imported energy from the
grid, users’ comfort, and CO2 emissions. SEMF incorporates a
Green Planning evolutionary algorithm, coined GreenCap+, to
facilitate load shifting of IoT-enabled devices, taking into con-
sideration the integration of renewable energy sources, multiple
constraints, peak-demand times, and dynamic pricing. Based
on our experimental evaluation utilizing real-world data, our
prototype system has outperformed the state-of-the-art approach
by up to ≈29% reduction in imported energy, ≈35% increase
in self-consumption of renewable energy, and ≈34% decrease in
CO2 emissions, while maintaining a high level of user comfort
≈94%-99%.

Keywords-Green Planning, Rule Automation, Renewable Self-
Consumption, Internet-of-Things, Load Shifting.

I. INTRODUCTION

According to the European Commission Green Deal1, it was
decided to reduce net greenhouse gas emissions by at least
55% by 2030, compared to 1990 levels, and become neutral by
2050. In [1], the survey covers the area of renewable planning
highlighting various challenges that arise during the integra-
tion with the IoT infrastructure. Considering various energy
sources utilized for power generation, including fossil fuels, re-
newable energy, and nuclear power, the environmental impact
is commonly quantified in terms of kilograms of CO2 emitted
per kilowatt-hour (kWh) of energy produced. Home Energy
Management Systems (HEMS) are instrumental in integrating

1European Green Deal, URL: https://tinyurl.com/3hbypfum

Fig. 1. An illustration of daily energy demand, solar energy production, and
device usage. Red dashed lines represent grid-sourced consumption, while
green dashed lines depict self-generated renewable energy utilization.

Renewable Energy Sources (RES) by enabling flexible energy
demand, crucial for reducing CO2 emissions, particularly in
the context of distributed and weather-dependent RES (see
Figure 1). The global count of residential IoT connected
devices used in HEMS is anticipated to reach 30.9 billion
units by the year 20252, and later to 100 billion by 2030 [2].

Green Planning encompasses computational methodologies
that strive to enhance environmental quality by implementing
load shifting strategies. An essential factor for managing
energy consumption and mitigating CO2 emissions lies in the
widespread adoption of the IoT infrastructure utilizing open
communication protocols [3]. Therefore, the convergence of
energy usage and CO2 emissions governed by IoT infras-
tructure can be achieved, by aligning both aspects within
a unified framework. Further, the self-consumption of RES
holds notable advantages over energy storage batteries, where
approximately 17% of the energy is lost due to AC/DC conver-
sion losses and heat dissipation [4]. It embodies a decentral-
ized in-situ strategy that necessitates minimal infrastructure
and predominantly relies on intelligent planning algorithms.
Empirical evidence has demonstrated that this method yields
more than a 70% reduction in energy consumption within
domestic households [5], [1].

2Statista, URL: https://tinyurl.com/mw74ku2h



Fig. 2. Overview of the Sustainable Energy Management Framework (SEMF)
demonstrating involved technologies and the related input data.

In our prior publications [6], [7], we have introduced Energy
Planner (EP) and Green Planner (GP), integrated in a system
called IMCF+. Both, EP and GP , effectively utilize off-
the-shelf AI algorithms, namely hill climbing and simulated
annealing, for their operations. IMCF+ emphasis lies on
“long-term” planning, enabling to compute comprehensive
yearly plans by performing less intricate daily computations.
Furthermore, a distinct algorithm has been developed called
GreenCap3 [5], [8], which refers to “daily” planning as it
attempts to find the best combination for allocating appliances
during the day by minimizing the imported energy from the
grid. In this study, a new extended version of our developed
algorithm is introduced, called GreenCap+, incorporated with
a new heuristic that considers peak demand and energy produc-
tion times. GreenCap+ is integrated into an IoT framework,
coined Sustainable Energy Management Framework (SEMF).

To exemplify the problem’s complexity, let us demonstrate
a practical example for clarity. Consider solar radiation for
10 hours on a given day, thus, 10 x 60 minutes = 600 time
slots on the x-axis. A solar system on a household is usually
about 10kWp at most, therefore, let us make the assumption
that peak production occurs around noon, as illustrated in
Figure 1. Observing the solar production curve, it can be
approximated by two triangles of the following size: height
= 10kWp / 1kW = 10 and base = 5x60 = 300 minutes,
which forms a rectangle (height x base) of 3000 cells to
plan each day. The primary challenge lies in populating these
cells with device operations, while simultaneously adhering
to their respective maximum energy bounds. For instance,
the operation of a washing machine (i.e., 2-hour duration ≈1
kW) could be rescheduled in a high production period (i.e.,
reserving ≈120/3000 cells) by also avoiding peak demand
times. The second challenge is the optimization of device
planning, while considering user-defined preference rules. The
majority of existing solutions encounter difficulties related
to convergence, primarily stemming from their limitations
in effectively managing a huge number of IoT devices and
handling complex multi-objective problems [1].

The main objective of SEMF revolves around its core
module, called GreenCap+, which acts as an IoT data manager
tasked with formulating a sustainable plan, while utilizing
several input data as shown in Figure 2. The specific problem

3GreenCap, URL: https://greencap.cs.ucy.ac.cy/

entails an adaptation of the NP-hard Bin Packing problem
[9], known as the 2D packing. This classification implies the
absence of a polynomial time algorithm capable of delivering
a swift and efficient solution. In contrast, a Brute Force
approach, involving back-tracking, has the capacity to compute
the optimal solution, however, it demands a substantial amount
of time and proves to be infeasible on low-end computing
nodes (i.e., Raspberry Pi - 1.5GHz CPU). To tackle the user
comfort objective, SEMF incorporates a cloud-hosted AI appli-
ance profiling module. The AI module analyzes the household
IoT appliances’ energy consumption patterns and operational
preferences, thereby generating a pool of recommendation
rules, tailored to optimize device scheduling.

SEMF addresses the aforementioned challenges, with a
primary focus on reducing CO2 emissions and the reliance on
grid-supplied energy. Given the complex nature of the decision
space in the aforementioned problem, a Genetic Algorithm
(GA) emerges as the most suitable approach for obtaining
a sub-optimal solution. Employing an evolutionary algorithm
enables to effectively harness bio-inspired operators, such as
mutation, crossover, and selection. The integration of a GA
with domain-specific local search heuristics culminates in the
development of a Memetic Algorithm (MA). This hybridization
yields notable enhancements to user fitness and substantially
augments convergence by mitigating the risk of becoming
trapped in local optima. The MA proposed in this study,
coined GreenCap+, has been incorporated into our in-house
developed pioneering SEMF platform, and further integrated
with the openHAB framework. The experimental evaluation
showcases that the proposed system achieves up to 54% self-
consumption of RES and an impressive ≈94% user comfort
level. Additionally, it successfully reduces ≈36% of the energy
imported from the grid and curtails CO2 emissions by ≈39%.
In summary, the paper’s key contributions follow:

• We present an upgraded version of [5] (i.e., utilizing a
new heuristic), coined GreenCap+, a Memetic Algorithm
(MA) that can efficiently manage user comfort and reduce
the imported energy from the grid, by considering CO2
emissions, high production and peak demand periods.

• We propose a novel and comprehensive IoT plat-
form, called Sustainable Energy Management Framework
(SEMF), designed and incorporated in openHAB system.

• We conducted an extensive experimental evaluation using
real and synthetic IoT datasets, consisting of peak elec-
tricity demand and solar panel production measurements.

• We have developed a prototype system, illustrating the
efficacy of the system in a real-world scenario.

The remainder of the article is organized as follows: Sec-
tion II presents the related work and Section III the system
model with the problem formulation. Section IV describes the
proposed algorithms, where Section V outlines our complete
system architecture and its internal components. Our experi-
mental methodology and findings are presented in Section VI,
and the article is concluded in Section VII.



II. RELATED WORK

Home Energy Management Systems (HEMS) enable energy
demand reduction by efficiently coordinating the operation of
smart appliances, while also enhancing user comfort through
energy management practices [10]. Through their sophisticated
functionalities, HEMS actively contribute to the mitigation
of climate change by supporting the efficient management
and optimization of energy consumption within households
[11]. The global market for HEMS has witnessed substantial
growth, expanding from USD 864.2 million in 2015 to USD
3.15 billion by the year 20224.

Energy savings of up to 40% can be achieved using HVAC
system incentives and home automation intelligent apps. A
method introduced in [11], called Integer Linear Programming
for Smart Scheduling (ILPSS), enhances the duty cycle of
HVAC equipment, optimizing energy utilization while simul-
taneously adhering to users’ comfort zone with regard to
temperature. Moreover, the authors in [12] addressed the
issue of chiller sequencing for minimizing HVAC electricity
consumption in building operations. A data-driven method-
ology is proposed for runtime estimation of the chiller’s
coefficient of performance (COP), a computationally efficient
COP prediction model, and an edge-based chiller sequencing
framework. Chen L. et al. [13], introduced a model-based
offline Reinforcement Learning (RL) algorithm tailored for
personalized HVAC systems, adept at efficiently adapting to
diverse occupants’ thermal preferences with minimal feedback.
Riekstin et al. [2], emphasized in mitigating residential elec-
tricity consumption and greenhouse gases by employing a
time-series prediction model. VALOS [10], is an online
scheduling algorithm for HEMS without reliance on predic-
tive elements. It demonstrates a high probability of optimal
purchasing timing with minimal computational costs.

In study [14], a symbolic aggregate approximation method
and K-Means clustering were used on load data to characterize
and estimate users’ load patterns based on demographic and
socioeconomic information. Additionally, a deep neural net-
work is developed to better capture the correlation between
users’ consumption habits. The authors in [15], introduce a
Day-Ahead Carbon Forecasting system (DACF) that utilizes
machine learning to predict the carbon intensity of supplied
electricity. DACF incorporates production forecasts for various
electricity-generating sources and combines them with the
carbon-emission rate of each source. An Economic Model
Predictive Control (EMPC) framework is designed in [16] to
facilitate demand response for enhancing power grid stability
while ensuring occupants’ thermal satisfaction in buildings.
The controller addresses conflicting objectives by simultane-
ously optimizing grid stability, measured by grid costs tied to
dynamic electricity prices, and occupants’ thermal satisfaction,
represented by a reference indoor temperature.

The authors in [17] implemented a system for monitoring in-
dividual photovoltaic (PV) modules using power line commu-
nication (PLC) compliant with HomePlug. The system enables

4MarketsandMarkets, URL: https://tinyurl.com/mmv28dzn

users to access detailed information about the performance
of their PV system, identifying abnormalities, and promoting
effective energy management. A smart HEMS can be designed
to optimize the use of home energy resources in environments
with a high penetration of PV systems by utilizing a Natural
Aggregation Algorithm (NAA) [18].

The aforementioned solutions face several computational
challenges, including the complexity of solving multi-objective
optimization problems, which demand significant computa-
tional resources for real-time decision-making. Additionally,
the need for adaptability to accommodate users’ preferences
and environmental changes, while also considering RES inte-
gration, increases computational demands while necessitating
advanced prediction and scheduling algorithms. Further, en-
suring the scalability of computational models to suit diverse
energy profiles across multiple residences is crucial.

III. SYSTEM MODEL & PROBLEM FORMULATION

In this section, the system model is defined, the problem
formulation is articulated, and the main terminology adopted
throughout this manuscript is introduced.

A. System Model

Let us assume a house with several residents equipped
with a net-metering PV system. The analysis revolves around
the household’s numerous shiftable smart appliances denoted
as D, including electric heaters, washing machine, air con-
ditioners, lights, heat pump, etc. Certain appliances (e.g.,
refrigerator) are excluded from consideration in our analysis
due to their high importance, as they necessitate continuous
operation and should always remain turned on. Consequently,
the occupants can utilize the PV power generated within the
household (i.e., Energy Production Table EPT), thus, only
drawing power from the grid when necessary, without storing
any power surplus (i.e., this work does not consider energy
storage technologies). We assume the building is equipped
with a Home Energy Management System (HEMS), such as
SEMF, to facilitate efficient energy management and distribu-
tion within the household. The system will efficiently process
the relevant result-set obtained from the database (i.e., Energy
Consumption Table ECT of IoT operations). This data serves
as input to a planning algorithm, such as GreenCap+, enabling
the platform to intelligently schedule smart appliances at
different times or distribute their operation over an extended
period. The primary objective of this study is to optimize an
objective function that strikes a balanced trade-off among
energy consumption, CO2 emissions, and user comfort. To
achieve this, intelligent planning techniques are employed
that strategically schedule the operation of appliances during
high production and off-peak periods (i.e., Grid Demand
Table GDT). The aim is to minimize energy usage and CO2
emissions while ensuring user comfort remains paramount.

We consider a residence equipped with D smart devices
that require sub-optimal planning. Let C represent the hourly
energy consumption planning vector, where the elements
(Cd, d ∈ [1, D]) denote the energy consumption of various



devices within the household. Further, let Z denote the hourly
CO2 emission, the elements of which (Zd, d ∈ [1, D]) define
the CO2 emissions of various devices in the residential build-
ing. Each smart device in the system is characterized by its
upper bound, denoted by Ud, and lower bound, denoted by
Ld, which dictate the permissible power consumption levels
for the respective devices.

The solar energy production at a certain time is defined with
P t. We also assume that a user has identified a set of prefer-
ence rules PRd

i for each device d = 1, . . . , D, and N = |PR|.
N is recorded with a meta-service, like the SEMF platform
we propose in this work, and stored in a database table.
GreenCap+ undertakes the periodic execution of these rules on
IoT devices. Each PR in the database is contingent upon a des-
ignated input context, which encompasses critical factors such
as location, peak-demand hours, and user-configured operation
hours. By incorporating PR and considering factors such as
energy costs, Residential Consumption Record (RCR), and
CO2 emissions, SEMF ensures the generation of sustainable
energy management plans.

B. Problem Formulation

The efficacy of the proposed technique is gauged by evaluat-
ing two key metrics: (i) the Imported Energy, which quantifies
the amount of energy drawn from the grid; and (ii) the
User Comfort, which assesses the level of satisfaction and
convenience experienced by the users in the context of energy
consumption and appliance scheduling.
• Imported Energy (IE): refers to the energy sourced

from the grid to enable appliances D to fulfill the pre-
determined operational requirements set by the residents
at a specific time-slot t. The equation is designed to de-
termine a combination of IoT operations that require the
minimum IE supplied from the grid. It can be computed
as the difference between the energy consumption Ci and
the power generation P during time-slot t, given by:

IEt = min

D∑
i=1

(Ct
i − P t)/t = 1, ...24 (1)

• User Comfort (UC): is determined by the summation
of all executed rules that have been configured by the
user. The equation is designed to determine the best
allocation of preferences that results in maximum UC.
The complete set of preference rules is denoted as N ,
and each individual rule PRi takes the value of 1 if
it is successfully adapted and subsequently executed,
otherwise, it is assigned a value of 0:

UC = max

N∑
i=1

(PRi)

{
1, if PRi is executed
0, otherwise

(2)

The objective function is evaluated as a weighted sum func-
tion, where w1 is associated to the IE objective, and w2 to
the UC objective. Both objectives contribute equally, as we
assign equal distribution (50%/50%) to w1 and w2, reflecting

their equivalent significance in achieving the overall aim. The
sum of w1 and w2 equals 100%, indicating the trade-off
between IE and UC in the optimization approach. These
weights determine the relative importance of each objective
in the overall optimization process, allowing us to strike an
appropriate balance between reducing energy importation from
the grid and maximizing user comfort.

Total = w1 ∗ IE + w2 ∗ UC (3)

Additionally, the proposed approach is also discussed with
respect to the following:
• Self-consumed Energy (SE): pertains to the energy that

a household consumes from its own renewable energy
generation installations (e.g., PV panels or wind turbines).

• CO2 Emission (Zi(IEi, k)): represents the CO2 emission
attributed to the operation of device d, contingent upon
the imported energy consumption IEi and the CO2
emission intensity k characteristic of a specific country.

• CPU Execution Time (Ft): denotes the processing du-
ration required by the system to execute the optimization
fitness function and compute the desired output.

C. Baseline Approaches

In this section, we present an overview of the baseline methods
employed for optimizing IE, UC, and Ft.
• Standard Method: consists of the execution phase,

where the operational boundaries of devices are identified
and recorded, laying the foundation for subsequent opti-
mization tuning. This approach disregards the IE metric
and instead prioritizes achieving maximum levels of UC.

• Brute Force Method: aims to discover an optimal so-
lution with the minimum IE and least CO2 emissions,
hence, exploit SE. This approach employs an exhaus-
tive search (i.e., Depth-First Search), to meticulously
explore the best timing for devices’ operation planning
while adhering to the maximum consumption bounds of
each device. The UC levels are relatively low, and the
time consuming Ft makes the computationally intensive
method impractical for real-time applications.

• Random Method: adopts a stochastic approach by ran-
domly shifting the operation of devices throughout the
day. The number of iterations performed in this random
process can be specified as an input parameter. In a
similar fashion to the previous case, both methods gen-
erate better results with respect to IE than the Standard
approach, by sacrificing UC levels. However, Random
Ft is considerably faster than Brute Force.

• GreenCap: is the prior version of our proposed algo-
rithm, which represents a traditional GA algorithm.

IV. THE GREENCAP+ ALGORITHM

This section provides a comprehensive overview of our
algorithmic methodology, accompanied by the local search
heuristics (i.e., Algorithms 1, 2 ) proposed in our research.



A. Overview

The research objective of this study is to devise an intelli-
gent technique that empowers users to discover a sustainable
allocation plan for operating a group of smart appliances,
while considering a pool of preference rules and a tentative
peak-demand history. The core aim is to reduce CO2 emissions
and the dependence on imported energy from the grid.

The GreenCap+ algorithm is a novel combination of our
developed Memetic Algorithm (MA) along with various local
search heuristics. The extended version of our work (i.e.,
GreenCap+) compared to its prior iteration [5], introduces a
new developed heuristic named Energy Optimization, which
collaboratively operates with Comfort Optimization to effi-
ciently schedule the operation of appliances during off-peak
hours and high production periods, boosting this way the
system’s performance. The MA builds upon the principles
of a traditional genetic algorithm and incorporates a search
technique aimed at enhancing user fitness while maintaining a
diverse population to mitigate premature convergence. Several
distinct approaches have been employed in prior research to
address scheduling and planning challenges, such as Linear
Programming, Machine Learning, and Dynamic Programming
[19], [20], [21], [22]. However, these techniques encounter
convergence difficulties and often struggle to handle a large
number of devices while concurrently optimizing energy con-
sumption, user comfort, costs, and CO2 emissions. In contrast,
MA typically outperforms traditional GA due to its hybridiza-
tion with local search heuristics for additional optimization.

B. GreenCap+ Memetic Algorithm (MA)

The GreenCap+ MA adopts an optimization approach in-
spired by the natural genetic process observed in living organ-
isms. At the beginning, a chromosome represents a residential
energy consumption pattern including the status of the smart
appliances (ON/OFF), each time-slot’s energy consumption,
and the length of chromosomes showing the total number of
IoT appliances. Thereafter, a population is generated, which
expresses a pool of possible solutions presenting each appli-
ance’s energy consumption state in a particular time-slot. For
every possible solution, the fitness function is evaluated based
on the problem’s objective metrics, aiming to reduce IE and
increase UC levels, while considering the Energy Consump-
tion Table (ECT), the Energy Production Table (EPT), and the
Grid Demand Table (GDT). Consequently, this contributes to
environmental sustainability by reducing CO2 emissions and
increasing the utilization of renewable energy.

During each iteration, the algorithm generates a new popula-
tion by applying the genetic operators, crossover and mutation.
Crossover involves combining two parent solutions (chromo-
somes) to create a new offspring O solution, based on a con-
figured probability. By exchanging segments of information
between the parents, the crossover operation generates diverse
and potentially better solutions that inherit desirable traits from
both parents. Mutation occurs to introduce randomness into
the offspring population, which helps avoid repetition and
promote diversity within the population. Next, the operations

Algorithm 1 ComfortOptimization: preserves consumption
to its original state
Input: ECT : Energy Consumption Table (O1 & O2); RCR: Residential
Consumption History Record; Pmax: Max power load (max bound) per appliance
Output: An energy plan solution ECT∗

1: COH(ECTO1, ECTO2, RCR) . Comfort Optimization Heuristic
2: For each (day in ECT ) . day: iterates daily through year
3: While (h = 0;h < 24) do . h: iterates hourly through a day
4: ~cd[h]← ~cd[h] + consumptionPerDevice(h)
5: sp[h]← sortHourlyProduction(h) . sorts production
6: EndWhile
7: If (cd < dayRCR) then . compares consumption plans
8: a← allocate(sp, cd, Pmax) . allocates operations
9: else

10: d← deallocate(sp, cd, Pmax) . deallocates operations
11: return (ECT∗) . returns new energy consumption plan

of the two inspired local search functions follow, coined
Comfort Optimization and Energy Optimization heuristics,
which support the algorithm’s precision and efficiency. Upon
the completion of both crossover, mutation, and heuristic oper-
ations, the GreenCap+ algorithm generates a new population
of candidate solutions. The fitness of this new population
is then compared and evaluated against the fitness of the
previous population. The fitness evaluation process involves
assessing each solution’s quality based on the optimization
objectives, which include reducing imported energy, increasing
user comfort levels, and considering energy production and
grid demand trends. By evaluating the fitness of the new
population, the algorithm identifies potential improvements
and determines whether the solutions have effectively evolved.

Furthermore, the GreenCap+ algorithm incorporates users’
preferences (i.e., user comfort UC) into the fitness function
calculation. Users can configure their preference rules PR
through the app or web portal of the proposed SEMF system,
defining their desired IoT configurations. Each successfully
adapted rule is regarded as a successfully executed action,
while not adapted rules are assigned a proportional error cost
based on the total set of PR.

C. Comfort Optimization Heuristic

The proposed local search heuristic, named Comfort Opti-
mization, is designed to maintain the daily total energy con-
sumption at its original level, utilizing the historical records of
users’ RCR. This approach addresses potential fluctuations that
might arise as a result of the MA procedures. If the configured
settings of PR conflict with the Residential Consumption
History Record (RCR), the system gives precedence to users’
comfort by adjusting the corresponding preference rules. The
algorithm computes the cumulative daily energy consumption
for each individual IoT device and arranges the hours of
energy production in order (see lines 4-5 of Algorithm 1).
Then, the consumption of the generated plan is compared
with the historical record RCR of the devices. When the
consumption for the day is lower than the corresponding RCR
level, an assignment of operations (activation) to the respective
devices takes place. This procedure, shown in line 8, considers
the upper Ud and lower Ld power load limits applicable to
each device, as well as the hours of peak energy production.



Algorithm 2 EnergyOptimization: avoids planning during
peak hours
Input: ECT : Energy Consumption Table; GDT : Grid Demand Table
Output: An energy plan solution ECT

1: EOH(ECTO3, GDT ) . Energy Optimization Heuristic
2: For each (day in GDT ) . day: iterates daily through year
3: While (h = 0;h < 24) do . h: iterates hourly through a day
4: ph[h]← findPeakHours(h) . n peak demand hours
5: nph[h]← findNonPeakHours(h) . n non-peak demand
6: pd[h]← findPeakProductionHours(h) . n production
7: EndWhile
8: If (pd 6= ph) then . If ph does not fall into pg
9: ra← reallocateAppliances(nph, pg)

10: ia← fitnessFunction(dayECT ) . calculates ia fitness
11: na← fitnessFunction(dayra) . calculates na fitness
12: If (ia > na) then . compares allocation results
13: return (na) . returns new allocation as planning solution
14: else
15: return (ia) . returns initial allocation as planning solution

Conversely, if the calculated consumption surpasses the corre-
sponding RCR value, the heuristic disengages (deactivates) the
relevant devices (i.e., indicated in line 10). The objective of
this function is to balance and harmonize energy consumption
levels in scenarios where there is an excessive activation or
deactivation of devices. Hence, this adaptation will maintain
a high level of comfort for users.

D. Energy Optimization Heuristic

The second proposed local search heuristic, coined Energy
Optimization, is responsible to shift devices’ consumption,
while considering peak production times, from a provided
number of peak demand hours to non-peak demand hours,
as calculated per day in the data flow of the total energy
network dataset utilized. In case peak demand hours do not fall
within production times, a reallocation of devices occurs, as
indicated in lines 8 and 9 of Algorithm 2. Next, both results,
from reallocation and initial allocation, are compared using
the fitness function as shown in lines 10-12. If the result
after reallocation shows that less imported energy is used then
the algorithm keeps that solution, otherwise, it is discarded.
The goal of this function is to exploit Demand Response, i.e.
shifts energy consumption from peak hours where the cost of
electricity imported from the power grid is higher compared to
non-peak hours where the cost is much lower. In this manner,
there is an opportunity for consumers to receive financial
incentives when they reduce or shift energy usage during peak
load times, and also minimize CO2 emissions.
Case scenario: A user configures five comfort rules in the
following simplified case scenario at the PR table for a house
of three rooms. Various input information from the residence’s
sensors along with certain web services (e.g., peak-demand
hours, high energy production times) are sent to GreenCap+.
The initial operation of GreenCap+ is to convert PR to
a binary vector, where each vector’s position represents a
preference rule in PR (see Figure 3). Then, it calculates
the approximate daily consumption of each appliance based
on the Residential Consumption History Record (RCR). This
calculation supports Comfort Optimization heuristic, which is
incorporated in the system, to balance the energy consumption

by avoiding turning on/off too many devices that could also
affect the users’ experience. A population function randomly
generates a solution s =< 0, 1, 1, 0, 1 >, meaning that
preference rules 2, 3, and 5 will be triggered at a specific
time period, thus, 1 and 4 will be discarded. The solution
then is evaluated using the fitness function with respect to the
imported energy from the grid and user comfort. Further, a
new solution is generated by the Energy Optimization heuristic
s∗ =< 0, 0, 1, 0, 1 >, liable to avoid the allocation of devices
during peak demand times by swapping operations to non-peak
hours, while also considering high production periods. Both
solutions are compared using the evaluation metrics and only
the best is forwarded to the next generation. The procedure
stops when the full cycle of generations is completed.

E. Performance Analysis

We analytically derive the performance of GreenCap+ with
respect to the estimated user comfort UC and CO2 emission Z,
which are correlated with the imported energy IE. We adopt
a worst-case analysis as it provides a bound for all input. Our
experiments in Section VI, show that under real datasets our
approach performs more efficiently than the projected worst
case. The analysis is based on our system model and ignores
any energy not directly associated with the preference rules.
Lemma 1. GreenCap+ approach has a user comfort of

FUC = 1
n

D∑
i=1

∑
j

UCj(PRi), j = 1, . . . , n, where n > 0 is

the number of preference rules that will be executed.
Proof. The algorithm will select at least n > 0 preference
rules to be executed. In an unrealistic case scenario and for a
user comfort equal to zero, GreenCap+ will not execute any
PR, meaning no device will be turned on, providing FUC =
0. However, considering a realistic worst case scenario, our
algorithm will perform like the Random approach since the
notion of infinite time is not available, thus, some PRi could
be triggered by turning on a device with a minimum energy
consumption. On the other hand, the Brute-Force approach by
greedily executing all preference rules will offer a FUC = 1.
Lemma 2. GreenCap+ approach has a CO2 emission of

FZ = 1
n

D∑
i=1

∑
j

Zj(IEj(PRi), z), j = 1, . . . , n, where n ≤ N

is the number of preference rules that will be executed, and z
the CO2 emission of a device.
Proof. Similarly to Lemma 1, the algorithm will select at
most n ≤ N preference rules to be executed. In the worst
case scenario and assuming that all preference rules will
be satisfied, GreenCap+ will act as the Standard approach
providing FZ = 1. On the other hand in an unrealistic
scenario, not executing any PRi, meaning no device will be
turned on, will provide FZ = 0. However, in a best case
scenario considering a realistic setting, our algorithm will act
like the Brute-Force approach, since it will exhaustively search
the entire space to find an optimal solution minimizing the
imported energy, and consequently reducing CO2 emissions.



Fig. 3. The GreenCap+ is liable to find a sustainable plan for the operation of
IoT appliances by only utilizing a Preference Rules (PR) table, a Residential
Consumption Record (RCR) history, and a weather forecast. Each IoT device
is represented with a letter in the chromosomes stack of the proposed MA,
and their state is denoted with 1 = ON or 0 = OFF.

V. THE SUSTAINABLE ENERGY MANAGEMENT
FRAMEWORK (SEMF)

This section provides an overview of the SEMF system
architecture, which consists of four layers: (i) Storage Layer;
(ii) Network Layer; (iii) Processing Layer; and (iv) Application
Layer. The Storage Layer comprises several components,
including a relational database (i.e., MariaDB), a file system,
and a cloud storage such as those offered by Google or
Azure. The Network Layer consists of a custom main Control
Unit (CU) functioning as a smart residential management
application, which allows the system to seamlessly integrate
with either open Home Automation Bus (openHAB), Do-
moticz, or HomeAssistant. The IoT device connectivity is
achieved through the industry-standard EEBUS, which offers a
robust foundation for efficient communication and control. The
Processing Layer is composed of the GreenCap+ Controller,
encompassing the entire energy management logic, and the
“AI appliance profiling”, a module for analyzing energy
consumption patterns and producing recommendation PR.
The AI component is hosted in the cloud and employs a linear
regression technique developed in Python. The Application
Layer involved the utilization of the Laravel framework for
the development of the Graphical User Interface (GUI) and
the Application Programming Interface (API), in conjunction
with the Linux crontab daemon. GUI is integrated into the
web portal and mobile application of openHAB, enabling
efficient control of IoT appliances and automated management
of sustainability-aware preferences. The following paragraphs
analyze the core elements of the SEMF system:
Control Unit (CU ): is a Java-based system installed on a
device, such as a Raspberry Pi, functioning within a user’s
localized network. This design choice underscores the commit-
ment to developing a system that is not only technologically
advanced but also has low deployment cost due to low
computational requirements (i.e., Raspberry Pi). To manage
IoT devices based on user-configured preference rules, the
CU will establish direct communication with them. Typically,
once the users download the mobile application, they will
gain interactive control over their appliances through the CU .
Considering the design of the CU , one can extend frameworks

Fig. 4. GreenCap+ mobile app: Interfaces displaying IoT appliances and
their operational mode, PRs, energy consumption and performance results.

like Domoticz, HomeAssistant, or openHAB, all of which are
open-source home automation software platforms offering an
extensive ecosystem of bridges. These bridges enable direct
remote or local communication with devices. This approach
offers the benefit of achieving compatibility with the IoT
market, addressing the substantial challenge of IoT integration.
GreenCap+ Controller: serves as an augmentative appli-
cation to the CU , devised to encompass the formulation
of the memetic algorithm in conjunction with the GUI and
essential storage mechanisms. Its purpose is to facilitate users
in customizing their preferences PR, ultimately achieving
an energy-aware planning solution. The user-defined settings,
stored within a local relational MariaDB database, are passed
as parameters in the GreenCap+ algorithm, constructed as a
JAVA module. Users input information into the database via
the mobile application, which has been adjusted to integrate
the configuration of PR through a web-based GUI.
AI appliance profiling module: constitutes a pivotal aspect of
the system architecture, contributing to enhanced user comfort.
Hosted within the cloud, the AI appliance profiling module is
a sophisticated component that employs a linear regression
technique [23]. Written in Python, this module scrutinizes
residents’ energy consumption patterns and operational pref-
erences of their IoT appliances. It then generates a compre-
hensive array of recommendation rules, meticulously tailored
to optimize energy usage according to each user’s distinct
comfort requirements. Scikit-learn has been utilized, a robust
machine learning library, which provides a comprehensive
suite of tools for data analysis. Through continual learning
and adaptation, the AI component refines its recommendations
over time, ensuring alignment with users’ evolving needs.

The AI appliance profiling component resides on a cloud
server side, while each CU (i.e., each residential house) acts
as a client. When considering the technical intricacies, the AI-
based module leverages consumption patterns (i.e., time series
data) and IoT device information as input parameters. These
data representing individual residential houses’ consumption
habits, are processed separately without sharing raw data cen-
trally. Each CU client, collects and sends energy consumption



behaviors to the cloud, where the processed data are then
utilized to generate recommendation rules that optimize each
client’s comfort. The AI-generated PRs encapsulate valuable
insights extracted from the aggregated data, securing sensitive
information. Users can adapt the recommended preferences or
discard them and add their own customized rules.
Graphical User Interface (GUI): developed in Laravel MVC
framework, utilizing JavaScript, and HTML. The GUI is
orchestrated by the NGINX web server, which is compatible
with Raspberry Pi. The web-based interface is composed of
the PR portal and the presentation of results stemming from
the GreenCap+ sustainability-aware process. The PR portal
facilitates users in configuring their IoT preference settings
for specific date-time slots (refer to Figure 4). Retrieving data
concerning the status of openHAB IoT appliances is accom-
plished through the utilization of a RESTful API service. An
Indoor Navigation Service has been also incorporated into our
platform, called Anyplace5, to enhance indoor mapping of IoT
functionalities and venue construction.
Managerial Implications: SEMF presents substantial oppor-
tunities for public service organizations to enhance energy effi-
ciency efforts. By disseminating information about its benefits
and functionalities, alongside collaboration with stakeholders
and offering incentives, such as grants or subsidies, adoption
can be encouraged. Furthermore, its applicability extends to
other entities like university campuses, municipal facilities,
or factories, where energy-saving measures are crucial for
sustainability goals. Moreover, the system could participate
in demand response events initiated by utilities or grid oper-
ators. By intelligently managing connected devices, it could
help reduce overall electricity demand during peak periods,
contributing to grid stability and reliability.

VI. EXPERIMENTAL METHODOLOGY & EVALUATION

This section provides an assessment of our proposed system.
We commence with an outline of the experimental methodol-
ogy and setup, subsequently detailing the series of experiments
conducted to underscore the advantages of GreenCap+.

A. Methodology

This section furnishes information considering the metrics
utilized, the algorithms and datasets employed for the evalua-
tion of the proposed methodology’s performance.
Testbed: The evaluation process is conducted on our labo-
ratory VMware private datacenter. The computational node
employed is configured with a Ubuntu 18.04 server image,
4GB of RAM and powered by 4 virtual CPUs, operating
at 2.40GHz. It leverages high-speed of 10K RPM RAID-5
LSILogic SCSI disks, formatted with VMFS 6.
Datasets: We have embraced a trace-driven experimental
approach, characterized by the utilization of real datasets as
inputs into our simulator. The first two datasets were retrieved
by the Laboratory for Advanced System Software (LASS)
at the University of Massachusetts Amherst, as part of the

5Anyplace, URL: https://anyplace.cs.ucy.ac.cy/

research project titled “Optimizing Energy Consumption in
Smart Homes”. Specifically, measurements were gathered for
the energy consumption of diverse appliances within residen-
tial settings (such as ovens, heat pumps, washing machines,
etc.), accompanied by data related to weather conditions and
solar energy production. An additional dataset was employed
to discern the hours of peak energy demand, sourced from
the U.S. Energy Information Administration, which gauges
the aggregate energy transmission directed towards the energy
grid. Moreover, a thorough analysis was conducted based
on the events and energy consumption patterns within these
datasets to gain insights into user behavior, facilitating the
understanding and generation of realistic preference rules.
• Residential Energy-Consumption Dataset [FLAT]:

The 408MB dataset encompasses 527,040 data points
per minute of a flat/apartment, spanning from January
1st, 2016 to December 31st, 2016. It consists of 20
columns, with the first column indicating the date and
time, while the ensuing 19 columns encapsulate energy
consumption measurements (in kilowatt-hours) for 19
distinct household appliances.

• Energy-Production Dataset: The dataset employed to
model energy generation through a PV system encom-
passes 65,741 measurements per hour spanning from
December 30th, 2010 to December 16th, 2017. It com-
prises two columns; the first one denotes the timestamp,
while the second quantifies the energy production. The
PV system’s capacity is 5.5 kWp, thereby signifying its
maximum hourly output potential as 5.5 kWh.

• Peak-Demand Dataset: The dataset employed to iden-
tify periods of peak energy consumption encompasses a
volume of 63.1MB and 579,746 hourly measurements.
The data was collected by numerous energy organizations
across all states of the US from January 1st, 2016 to
December 31st, 2016.

To assess the scalability of our propositions for buildings of
different scales, we have generated two realistic datasets by
expanding the above onto various residential building sizes.
The resulting datasets are the following:
• Residential Energy-Consumption Dataset [HOUSE]:

A dataset for a three-bedroom house was created by
replicating and blending the readings, then scaling up
the original dataset by a factor of four. The number
of IoT devices, energy consumption, and preferences is
proportionally increased following realistic patterns as we
have a larger number of residents and requirements. The
PV system’s capacity for the house scenario is 10 kWp.

• Residential Energy-Consumption Dataset [DORMS]:
A dataset for a university campus (dormitories) was
also synthetically generated from the original datasets.
It comprises 50 dormitory apartments, each containing
two bedrooms. As the number of residents increases, the
quantity of IoT devices, energy consumption, and pref-
erences is correspondingly augmented. The PV system’s
capacity for the dorms scenario is 50 kWp.
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Fig. 6. Performance Evaluation: Evaluation in terms of IE, SE, UC, and Ft, based on the Standard method performance.

Metrics: The effectiveness of the methodology in attaining the
previously introduced research objective is assessed through
two key performance indicators, namely, Imported Energy and
User Comfort, as expounded in Section III. The mean and
standard deviation values derived from the results are depicted
with error bars in all following experimental analyses, based
on ten iterations for each scenario. Experimental series C, D,
E, and F were conducted over the course of a year.

B. Prototype System Evaluation

In this series of experiments, we assess the performance
of the proposed GreenCap+ algorithm integrated into our
SEMF prototype system in comparison to the Green Planner
algorithm embedded in the IMCF+ framework. According
to our prior work [6], Green Planner outperformed IFTTT 6,
which was state-of-the-art, by 18% increased user comfort,
30% less energy consumption, and 40% reduction in CO2
emissions. We deployed a live instance of our real prototype
system for a household of three individuals over the course
of one week. Each user specified certain preference rules
through a mobile app that interacts with the management
system. We utilize data from the OpenWeatherMap7, a service
that provides real-time weather information for various loca-
tions around the world, to measure environmental parameters
(i.e., sunlight, temperature). The evaluation is based on self-
consumption, user comfort, and CO2 emissions, as illustrated

6IFTTT - Automate business & home, URL: https://ifttt.com/
7OpenWeatherMap, URL: https://openweathermap.org/

in Figure 5. The Green Planner algorithm achieved ≈ 96.5%
user comfort, around 51 kg of CO2 emissions, ≈ 17 kWh of
self-consumption, and roughly 115 kWh imported from the
grid. The GreenCap+ algorithm yielded a user comfort rate
of ≈ 99%, CO2 emissions of about 32 kg, self-consumption
totaling around 61 kWh, and an import of ≈ 71 kWh from
the grid. Evidently, the GreenCap+ algorithm delivers notably
better results concerning self-consumption and CO2 emissions.
Moreover, the user comfort levels achieved by both methods
are comparably close, although the GreenCap+ approach
demands slightly more execution time.

C. Performance Evaluation

In the subsequent set of experiments, we assess the efficacy
performance of the GreenCap+ algorithm in comparison to
all other methods, with respect to imported energy, self-
consumption of electricity, and user comfort levels, as indi-
cated in Figure 6. The Standard approach provides a break-
down of the data extracted from the original datasets according
to the metrics mentioned earlier. It reveals a 78% imported
energy from the grid, a self-consumption of 21%, and the best
level of user comfort achieved. The outcome of the Random
method exhibits a relatively diminished user comfort level
≈35% and a self-consumption rate ≈38%, while revealing a
higher imported energy rate from the grid at ≈61%. In terms of
self-consumed energy, the best outcome was achieved by the
Brute Force algorithm at approximately 67% (≈ 6248 kWh),
accompanied by a relatively low imported energy rate from
the grid of about 32% (≈ 3011 kWh), due to its capability
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to provide an optimal planning solution. However, the user
comfort obtained by Brute Force ranges at only ≈ 40%, being
the second lowest among the other evaluated approaches. As
evident from the results, the GreenCap+ algorithm showcased
the best overall performance and also outperformed its prior
version [5], which represents a traditional GA algorithm,
presenting an exceptional user comfort level of approximately
94%. It achieved a remarkable self-consumption rate of about
54% (≈ 4980 kWh) and managed imported energy at around
43-47% (≈ 4440 kWh).

The Standard approach demonstrates the fastest execu-
tion time due to its straightforward error calculation without
considering energy production hours or peak demand times.
Following closely is the Random approach, which features
a relatively swift execution owing to its absence of time-
consuming processes. The GreenCap+ algorithm achieves
a reasonable execution time while effectively balancing all
the objectives. The Brute Force algorithm exhibits the worst
execution time, as anticipated, due to its exhaustive search
through all possible solution combinations.

D. CO2 Evaluation

In the third phase of our experimental series, we assess
the algorithms’ performance in terms of CO2 emissions.
Recognizing that energy originates from diverse sources such
as fossil fuels, renewables, and nuclear, the environmental
impact is conventionally quantified in terms of kilograms of
CO2 emitted per kilowatt-hour (kWh) of energy produced. In
countries characterized by a high kg CO2 per kWh coefficient,

this leads to a reduction in CO2 emissions and contributes to
the stabilization of the grid. The GreenCap+ has been applied
across various countries/regions around the globe considering
a household scenario, displaying the CO2 emission intensity
(kg CO2 per kWh) stemming from electricity generation,
sourced from U.S. Energy Information Administration (EIA)8,
European Environment Agency (EEA)9, and International
Energy Agency (IEA)10. The intensity of CO2 emissions is
derived from the ratio of CO2 emissions from public electricity
production (relative to CO2 emissions from public electricity
and heat production) by the gross electricity production.

As depicted in Figure 7, the data clearly reveals that
in regions characterized by high kg CO2 per kWh factor,
GreenCap+ showcases the capability to decrease CO2 up to
45% in comparison to the Standard approach. Notably, the
Brute Force method outperforms other methods in terms of
emission reduction, attributed to its exhaustive exploration of
the solution space. The Random technique exhibits relatively
higher emission levels compared to most approaches (i.e., sec-
ond worst approach). On average, it is evident that a significant
number of regions are still at a considerable distance from
achieving CO2 neutrality. This underscores the pressing need
for innovative contributions in this domain, which presents an
exciting opportunity to address the challenges associated with
reducing carbon emissions and advancing sustainability.

E. Initialization Evaluation

In the fourth experiment, we evaluate the performance of
the proposed GreenCap+ algorithm using various population
figures and different percentage weights, as described in Sec-
tion III, with respect to the imported energy weight w1 from
the grid, and the user comfort weight w2. After conducting
multiple tests and tuning parameters, it has been determined
that increasing the number of generations results in a longer
execution time for the algorithm to complete. However, more
generations do not necessarily mean a better performance
outcome. As shown in the left plot of Figure 8, during the
initial ≈10 generations the reduction of imported energy from
the energy network is noticeable, where in the following

8U.S. Energy Information Admin., URL: https://tinyurl.com/3bzspb9c
9European Environment Agency, URL: https://tinyurl.com/46vh8tt2
10International Energy Agency, URL: https://tinyurl.com/3w48mm8v
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generations, the improvement becomes less significant. In a
similar manner, the larger the population of the algorithm
we select, the longer the execution time will last. Because
of the randomness that exists in the genetic algorithm, it
was chosen to use a population equal to 50, as it provides a
fairly large range of random solutions. By examining the first
plot of Figure 8, we identified a point where the population
and generation settings led to minimal improvement. This
point can be considered indicative of high convergence using
those specific configuration parameters (i.e., population = 50,
generation = 10). Based on our empirical findings, the upper
bound limits for both parameters were set to 100, and are
sufficient enough to allow the algorithm reach a solution.

To find the ideal balanced allocation between the two met-
rics we conducted several experiments adjusting the weights of
the objective function and observed the overall performance,
as shown in the right plot of Figure 8. The results in the middle
plot are displayed with respect to the percentage of the total
consumption (considered as 100%) against the w1 and w2.
The trade-off is clearly presented through the various weight
percentages utilized in the fitness function. According to the
results obtained, the best allocation case scenario was obtained
using w1=75% for the imported energy and w2=25% for the
user comfort. Thus, the more we reduce the w1 percentage,
the more energy is imported from the grid, while the algorithm
manages to maintain the user’s comfort quite high (≈90%),
even with just w2=25% allocation.

F. Energy Conservation Study

In the fifth experimental series, we evaluate the monthly
performance of the proposed GreenCap+ algorithm, in terms

of user comfort. In Figure 9, we observe the algorithm’s
performance and trade-off for each month with respect to
self-consumption and imported energy, while comparing two
different cases. In the first case, the GreenCap+ completely ig-
nores the user comfort (non-user oriented), meaning that none
of the preference rules configured by users are considered,
where in the second case all preference rules are considered
accordingly (user oriented).

In Figure 9, the algorithm manages to consume more solar
energy produced by the PV system when user comfort is
not considered. Specifically, the GreenCap+ manages to self-
consume 54% of the total consumption when preference rules
are completely ignored, while the self-consumption when user
comfort is taken into consideration is about 51%. We also
observe that the IE from the grid for each month of the year
is slightly less when the algorithm does not consider UC,
which is expected. More specifically, the total input energy
when preference rules are not considered is about 46%, while
when the algorithm takes into account UC is about 49%.

G. Scalability Evaluation

In the last experimental series, we assess the scalability per-
formance of the GreenCap+ algorithm in comparison to state-
of-the-art Green Planner, with respect to imported energy,
self-consumption of electricity, user comfort levels, and CO2
emissions, as indicated in Figure 10. Specifically, we tested
the system on realistic large-scale scenarios (utilizing real and
synthetic data as described in Section VI-A) involving a flat
apartment, a house, and dormitories over the course of a week,
a month, and a year. Figure 10 demonstrates that GreenCap+

outperforms Green Planner in all cases, while it shows a



balanced performance considering the increase of users, IoT
devices, preferences, and energy consumption. In the flat
case GreenCap+ outperforms Green Planner by IE≈29%,
UC≈2.5%, SE≈35%, and Z≈34%. According to the house
scenario GreenCap+ achieved better results than Green Plan-
ner by IE≈28%, UC≈6%, SE≈32%, and Z≈30%. In the
last case of dorms, better performance is achieved from
GreenCap+ by IE≈23%, UC≈14%, SE≈28%, and Z≈27%.
In summary, our system proficiently performs under different
scales and time frames, highlighting its robustness and effec-
tiveness in diverse settings.

VII. CONCLUSION & FUTURE WORK

The majority of the works in the existing literature estab-
lished an energy management model to either cater to user
comfort levels or electricity costs. However, none of them
simultaneously cater to CO2 emissions, integration of RES,
multiple constraints, peak demand times, and user comfort to
fully utilize the innovative smart metering infrastructure. In
this work, an intelligent evolutionary algorithm is proposed,
called GreenCap+, integrated into a framework, coined SEMF,
that enables users to find an energy efficient allocation plan
for the operation of a set of IoT devices along with a pool
of preference rules, while considering peak-demand and high
production periods. The system’s sophisticated heuristics are
adept at analyzing historical energy consumption patterns,
considering weather conditions, and operational preferences
through a centralized CU to curate a personalized energy
management experience for an easier and greener life. Accord-
ing to our experimental evaluation utilizing real-world data,
SEMF has outperformed the state-of-the-art approach by up
to ≈29% reduction in imported energy from the grid, ≈35%
increase in self-consumption of renewable energy, and ≈34%
decrease in CO2 emissions, while maintaining a high level of
user comfort ≈94%-99%. In the future, we intend to expand
our research on Green Planning solutions, tackling challenges,
such as interoperability, scalability, and fluctuations in power
supply, and detection of unusual energy-pattern behavior.
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