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Overview

• Vector Databases Concepts

– Embeddings (Text vs Sentence)

– Similarity Search & Approximate Similarity Search 

(Lp-Norms), Libraries

• Chroma DB

– Internals (Main-Memory vs. Persistency with DuckDB)

– Storage: Parquet (lecture 3) | DuckDB

– Indexing: Hierarchical navigable small world (HNSW)

– Other Vector Databases Products
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Vector Databases

• A vector database is a specialized type of database 

designed to store, index, and search high-

dimensional vector embeddings efficiently. 

Some background 

first, then we come 

back to vector 

databases!
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Vector Embeddings

• Numerical representations of data (e.g., text, images, 

audio, video) generated using machine learning 

models like word2vec, OpenAI’s CLIP, or BERT.
– Simply put, vector embeddings are lists of numbers that can represent 

many types of data.

– Instead of traditional structured data (like rows and columns in a 
relational database), vector databases manage numerical 

representations of data points in a multi-dimensional space.
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Text vs. Word Embeedings

• Word Embedding: Creates separate vector for each 

word. It does not consider the entire sentence or its 

context beyond neighboring words. (e.g., word2vec)

• Sentence Embedding: Captures context, syntax, and 

overall meaning of entire sentences, paragraphs, or 

documents as dense vectors. (ChatGPT text-
embedding-ada-00)

import openai

def get_embedding(text, model="text-embedding-ada-002"):

response = openai.Embedding.create(

input=text,

model=model

)

return response['data'][0]['embedding']

# Example usage

text = "Hello, this is an example of text embedding."

embedding = get_embedding(text)

print("Embedding vector:", embedding[:5], "...") # Print first 5 elements for brevity

Using OpenAI API 

Not open! Let’s see some 

alternatives
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Example: Word Embeedings

• pip install -U genism

• pip3 install gensim // mac Mx silicon

from gensim.models import Word2Vec

# Example training data

sentences = [["hello", "world"], ["machine", "learning", "is", "fun"]]

# Train Word2Vec model

model = Word2Vec(sentences, vector_size=100, min_count=1)

# Get word embedding for "hello"

embedding = model.wv["hello"]

print("Word Embedding for 'hello':", embedding[:5]) # First 5 values
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(Open) Sentence Embeedings
SentenceTransformers (SBERT)

Best for: General-purpose text embeddings with high performance.

Why? Efficient, high-quality embeddings with transformer-based models (e.g., all-MiniLM-L6-v2).

Install: pip install sentence-transformers

Hugging Face Transformers

Best for: Custom embeddings using any transformer model.

Why? Supports a wide range of models like BERT, RoBERTa, and GPT.

Install: pip install transformers torch

FastText (Facebook)

Best for: Word-level embeddings, especially for low-resource languages.

Why? Works well with subword information and OOV (out-of-vocabulary) words.

Install: pip install fasttext

Gensim (Word2Vec, Doc2Vec)

Best for: Classic word and document embeddings.

Why? Lightweight and easy to use for traditional NLP tasks.

Install: pip install genism

• Which One Should You Choose?

• For general text embeddings: SentenceTransformers (SBERT)

• For transformer-based models: Hugging Face Transformers

• For word embeddings: FastText or Word2Vec

• For unsupervised large-scale embeddings: FastText

Our Focus for 

the next slides
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Example: Sentence Embeeding 

with Sentence-Transformers

• pip install sentence-transformers

# Import the necessary library

from sentence_transformers import SentenceTransformer

# Initialize the model

model = SentenceTransformer('paraphrase-MiniLM-L6-v2')

# Example sentence

sentence = "This is an example sentence for embedding."

# Generate the embedding

embedding = model.encode(sentence)

# Print the embedding

print(embedding)
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Semantic Similarity Search

• Semantic Similarity Search is the process by which 

pieces of text are compared in order to find which 

contain the most similar meaning.

• Example:

– “That is a happy dog”

– “That is a very happy person”

– “Today is a sunny day”

• You guessed it, our aim is to compare

the vectors not the string sentences!
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Vector Comparison Underpinnings!

Lp-norm 

Comparison of 2 

Vectors

def cosine_similarity(a, b):
return np.dot(a, b)/

(norm(a)*norm(b))
Largest
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Euclidean vs. Manhattan 

Distance
• Euclidean vs. Manhattan distance:

- Euclidean Distance (using Pythagoras theorem) 

is 6 x √2 = 8.48 points): Diagonal Green line

- Manhattan (city-block) Distance (12 points): 

Red, Blue, and Yellow lines

Manhattan versus Euclidean distance:  The red, blue, and yellow 
lines representing the Manhattan distance all have the same 
length (12), whereas the green line representing the Euclidian 
distance has length 6×√2 ≈ 8.48. Under taxicab geometry, all paths 
shown have length 12, including the green one.
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2-Dimensional 

Scenario

http://en.wikipedia.org/wiki/Image:Manhattan_distance.svg
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Comparing 2 Vectors with 

Cosine Similarity
from sentence_transformers import SentenceTransformer

from sklearn.metrics.pairwise import cosine_similarity

# Initialize the model

model = SentenceTransformer('paraphrase-MiniLM-L6-v2')

# Example sentences

sentence1 = "This is a sentence about machine learning."

sentence2 = "Machine learning is a fascinating topic."

# Generate embeddings for both sentences

embedding1 = model.encode(sentence1)

embedding2 = model.encode(sentence2)

# Compute cosine similarity between the two embeddings

similarity_score = cosine_similarity([embedding1], [embedding2])

# Print the similarity score

print(f"Cosine Similarity: {similarity_score[0][0]}")

cos 0° = 1 // Perfect Match
cos 90    = 0 // No Match

Cosine similarity is a metric 

used to measure how similar 
two vectors (or documents, 

in the context of text) are, 

based on the cosine of the 

angle between them. It is 

widely used in information 
retrieval, text mining, and 

machine learning to 

compare the similarity 

between two objects.

Problem: If I have a database with N objects comparing all 

vectors requires N comparisons which is slow!  We need 

some DB/index to speed up the computation
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Chroma: A Simple Vector 

Database
• Example of How It Works Internally

1.Embeddings and metadata are (tentatively) 

stored in DuckDB (can be main memory too)

2.Chroma builds an Hierarchical navigable small 

world (HNSW) index to speed up vector 

similarity search.

– HNSW does the so called Approximate Nearest 

Neighbor Search (will see this next)

3.DuckDB handles filtering on metadata.

4.Chroma queries the HNSW index for nearest 

neighbors and refines results using metadata 

filters.
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Example: Chroma Hello World

(with persistency)
• By default, Chroma uses DuckDB as its embedded database for 

efficient data storage and retrieval, but you can configure it to use 

alternative backends.

– DuckDB – An in-process SQL OLAP database management ... a 

column-oriented sqlite that supports parquet 
import chromadb

# Create a persistent ChromaDB instance using DuckDB as storage

chroma_client = chromadb.PersistentClient(path="./chroma_db")

# Create a collection (automatically stored in DuckDB)

collection = chroma_client.get_or_create_collection(name="my_collection")

# Add some example data

collection.add(
ids=["id1"],

embeddings=[[0.1, 0.2, 0.3]],
metadatas=[{"category": "example"}]

)

# Query the collection

results = collection.query(
query_embeddings=[[0.1, 0.2, 0.3]],

n_results=1

)

print(results)
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Chroma / In-Memory vs DuckDB

• Chroma stores its data in different ways depending on 

the storage mode you choose:

• 1. In-Memory Mode (Default)

• If you initialize Chroma without specifying persistence, it keeps 

everything in RAM.

• Data is lost when the process is stopped.

• Example:

import chromadb 

chroma_client = chromadb.Client() # In-memory storage

• 2. Persistent Mode (Using DuckDB)

– Chroma stores data on disk using DuckDB as the underlying database.

– Metadata and vector embeddings are saved in a DuckDB file at the specified 

path.

– chroma_client = chromadb.PersistentClient(path="./chroma_db")  # Stores data in 
./chroma_db
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DuckDB: Columnar Embedded 

OLAP Database

• DuckDB is a columnar database, making it highly 

efficient for running analytical queries.

• It is embeeded (like SQLlite), so doesn’t run a a service 

but part of the caller memory space

• It supports two main storage formats: its 

native .duckdb format or open-standard file formats like 

Parquet, which DuckDB reads and writes with 

impressive efficiency

https://www.pracdata.io/p/duckdb-beyond-the-hype

https://duckdb.org/pdf/SIGMOD2019-demo-duckdb.pdf
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Chroma Similarity Search 

Example / DuckDB+Parquet
import chromadb

from chromadb.config import Settings

# Step 1: Initialize Chroma client with a local storage path

client = chromadb.Client(Settings(chroma_db_impl="duckdb+parquet", persist_directory="./chroma_db"))

# Step 2: Create or access an existing collection

collection = client.create_collection("example_collection") # You can also use .get_collection() if it already exists

# Step 3: Define your data (for this example, we’ll use some simple sentences)

texts = [

"Chroma is an open-source vector database.",

"Chroma supports fast similarity search for machine learning applications.",

"You can store vectors and perform searches using Chroma."

]

# Step 4: Insert the data into Chroma

# You can use embeddings for real-world cases, here we’ll just insert the raw data for simplicity

# Normally, you'd embed the text before inserting, but for the sake of the example, we'll skip that.

metadata = [{"text": text} for text in texts]

# Insert into Chroma collection

collection.add(

documents=texts, # The raw text data

metadatas=metadata, # Optional metadata

ids=[str(i) for i in range(len(texts))] # Unique IDs for each document

)

# Step 5: Verify the insertion by querying the collection

results = collection.query(query_texts=["What is Chroma?"], n_results=3)

print("Query Results:")

for result in results["documents"]:

print(result)
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Hierarchical navigable small 

world (HNSW)
• Approximate Nearest Neighbor Search

– Instead of exact matches, vector databases use 

Approximate Nearest Neighbor (ANN) search to 

find vectors that are most similar to a given query.

• HNSW resembles skip list that have a O(logn) 

search 

• HNSW howewer is a graph search method with 

polylogarithmic T = O(logᵏn) search complexity 

which uses greedy routing.
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HNSW Query Routing Principles

• The search starts from the highest layer and proceeds to 

one level below every time the local nearest neighbour is 

greedily found among the layer nodes. Ultimately, the 

found nearest neighbour on the lowest layer is the 

answer to the query.
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Libraries Implementing HNSW

• FAISS (Facebook AI Similarity Search) - Facebook

• Language: C++, Python

• Features: Optimized for both CPU and GPU-based searches, scalable 

for large datasets.

• ScaNN (Scalable Nearest Neighbors) – Google / AlloyDB
• Language: Python

• Can handle large-scale data with high efficiency, supports multiple distance metrics.

• Hnswlib
• Language: Python, C++

• simplicity and speed.

• Annoy (Approximate Nearest Neighbors Oh Yeah)

• extensively in recommendation systems.

• It supports HNSW for indexing and is designed for large-scale applications.

• extensively in recommendation systems.
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Vector Databases in the Wild

• HNSW Implementing by many vendors: 

Milvus, Pinecone, Weaviate, Qdrant, 

Vespa, Chroma .. even postgres with 

pgvector !

https://github.com/pgvector/pgvector



5b-22
EPL646: Advanced Topics in Databases - Demetris Zeinalipour ©  (University of Cyprus)

LLMs, RAG and Vector 

Databases
• LLMs (Large Language Models) are advanced AI 

models trained on vast amounts of text data to understand 

and generate human-like language. 

– These models use deep learning, specifically transformers (like 

GPT, BERT, and LLaMA), to process and generate text based on 

input prompts.

• LLMs require re-training to incorporate new content. This 

is expensive.

• ChatGPT and other systems allow uploading a variety of 

files that undergo Retrieval-Augmented Generation 

(RAG).
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LLMs, RAG and Vector 

Databases
• Retrieval – The model searches a knowledge base (e.g., documents, 

databases, or vector stores) for relevant information. Augmentation – The 

retrieved data is added to the model’s input context. Generation – A 

language model (like GPT) generates a response using both the external 

data and its internal knowledge.

https://medium.com/@akriti.upadhyay/unveiling-the-dynamics-of-vector-databases-in-ai-

landscape-0784ea0f2f50
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Open Source LLMs 

• Ollama is an open-source framework that enables 

users to run and interact with large language models 

(LLMs) locally on their machines. 

– It simplifies downloading, managing, and running AI models 

without requiring cloud services.

– Example Models: Mistral (French), Llama (Facebook), Falcon 

(UAE), Qwen (Alibaba), Palm (Google), Grok (xAI), Deekseek

(Chinese)

– Integration with AI Marketplaces: Huggingface

https://chatucy.cs.ucy.ac.cy/

https://medium.com/@yugan

k.aman/top-10-open-source-

llm-models-and-their-uses-

6f4a9aced6af
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