
5b-1
EPL646: Advanced Topics in Databases - Demetris Zeinalipour © (University of Cyprus)

EPL646 – Advanced Topics in Databases

Lecture 5b

Vector Databases

Demetris Zeinalipour
http://www.cs.ucy.ac.cy/~dzeina/courses/epl646

Credits: https://mlops.community/vector-
similarity-search-from-basics-to-production/

ChatGPT

Department of Computer Science

University of Cyprus

http://www.cs.ucy.ac.cy/~dzeina/courses/epl646
https://mlops.community/vector-similarity-search-from-basics-to-production/
https://mlops.community/vector-similarity-search-from-basics-to-production/

5b-2
EPL646: Advanced Topics in Databases - Demetris Zeinalipour © (University of Cyprus)

Overview

• Vector Databases Concepts

– Embeddings (Text vs Sentence)

– Similarity Search & Approximate Similarity Search

(Lp-Norms), Libraries

• Chroma DB

– Internals (Main-Memory vs. Persistency with DuckDB)

– Storage: Parquet (lecture 3) | DuckDB

– Indexing: Hierarchical navigable small world (HNSW)

– Other Vector Databases Products

5b-3
EPL646: Advanced Topics in Databases - Demetris Zeinalipour © (University of Cyprus)

Vector Databases

• A vector database is a specialized type of database

designed to store, index, and search high-

dimensional vector embeddings efficiently.

Some background

first, then we come

back to vector

databases!

5b-4
EPL646: Advanced Topics in Databases - Demetris Zeinalipour © (University of Cyprus)

Vector Embeddings

• Numerical representations of data (e.g., text, images,

audio, video) generated using machine learning

models like word2vec, OpenAI’s CLIP, or BERT.
– Simply put, vector embeddings are lists of numbers that can represent

many types of data.

– Instead of traditional structured data (like rows and columns in a
relational database), vector databases manage numerical

representations of data points in a multi-dimensional space.

5b-5
EPL646: Advanced Topics in Databases - Demetris Zeinalipour © (University of Cyprus)

Text vs. Word Embeedings

• Word Embedding: Creates separate vector for each

word. It does not consider the entire sentence or its

context beyond neighboring words. (e.g., word2vec)

• Sentence Embedding: Captures context, syntax, and

overall meaning of entire sentences, paragraphs, or

documents as dense vectors. (ChatGPT text-
embedding-ada-00)

import openai

def get_embedding(text, model="text-embedding-ada-002"):

response = openai.Embedding.create(

input=text,

model=model

)

return response['data'][0]['embedding']

Example usage

text = "Hello, this is an example of text embedding."

embedding = get_embedding(text)

print("Embedding vector:", embedding[:5], "...") # Print first 5 elements for brevity

Using OpenAI API

Not open! Let’s see some

alternatives

5b-6
EPL646: Advanced Topics in Databases - Demetris Zeinalipour © (University of Cyprus)

Example: Word Embeedings

• pip install -U genism

• pip3 install gensim // mac Mx silicon

from gensim.models import Word2Vec

Example training data

sentences = [["hello", "world"], ["machine", "learning", "is", "fun"]]

Train Word2Vec model

model = Word2Vec(sentences, vector_size=100, min_count=1)

Get word embedding for "hello"

embedding = model.wv["hello"]

print("Word Embedding for 'hello':", embedding[:5]) # First 5 values

5b-7
EPL646: Advanced Topics in Databases - Demetris Zeinalipour © (University of Cyprus)

(Open) Sentence Embeedings
SentenceTransformers (SBERT)

Best for: General-purpose text embeddings with high performance.

Why? Efficient, high-quality embeddings with transformer-based models (e.g., all-MiniLM-L6-v2).

Install: pip install sentence-transformers

Hugging Face Transformers

Best for: Custom embeddings using any transformer model.

Why? Supports a wide range of models like BERT, RoBERTa, and GPT.

Install: pip install transformers torch

FastText (Facebook)

Best for: Word-level embeddings, especially for low-resource languages.

Why? Works well with subword information and OOV (out-of-vocabulary) words.

Install: pip install fasttext

Gensim (Word2Vec, Doc2Vec)

Best for: Classic word and document embeddings.

Why? Lightweight and easy to use for traditional NLP tasks.

Install: pip install genism

• Which One Should You Choose?

• For general text embeddings: SentenceTransformers (SBERT)

• For transformer-based models: Hugging Face Transformers

• For word embeddings: FastText or Word2Vec

• For unsupervised large-scale embeddings: FastText

Our Focus for

the next slides

5b-8
EPL646: Advanced Topics in Databases - Demetris Zeinalipour © (University of Cyprus)

Example: Sentence Embeeding

with Sentence-Transformers

• pip install sentence-transformers

Import the necessary library

from sentence_transformers import SentenceTransformer

Initialize the model

model = SentenceTransformer('paraphrase-MiniLM-L6-v2')

Example sentence

sentence = "This is an example sentence for embedding."

Generate the embedding

embedding = model.encode(sentence)

Print the embedding

print(embedding)

5b-9
EPL646: Advanced Topics in Databases - Demetris Zeinalipour © (University of Cyprus)

Semantic Similarity Search

• Semantic Similarity Search is the process by which

pieces of text are compared in order to find which

contain the most similar meaning.

• Example:

– “That is a happy dog”

– “That is a very happy person”

– “Today is a sunny day”

• You guessed it, our aim is to compare

the vectors not the string sentences!

5b-10
EPL646: Advanced Topics in Databases - Demetris Zeinalipour © (University of Cyprus)

Vector Comparison Underpinnings!

Lp-norm

Comparison of 2

Vectors

def cosine_similarity(a, b):
return np.dot(a, b)/

(norm(a)*norm(b))
Largest

5b-11
EPL646: Advanced Topics in Databases - Demetris Zeinalipour © (University of Cyprus)

11

Euclidean vs. Manhattan

Distance
• Euclidean vs. Manhattan distance:

- Euclidean Distance (using Pythagoras theorem)

is 6 x √2 = 8.48 points): Diagonal Green line

- Manhattan (city-block) Distance (12 points):

Red, Blue, and Yellow lines

Manhattan versus Euclidean distance: The red, blue, and yellow
lines representing the Manhattan distance all have the same
length (12), whereas the green line representing the Euclidian
distance has length 6×√2 ≈ 8.48. Under taxicab geometry, all paths
shown have length 12, including the green one.

0 1 2 3 4 5 6
0

1

2

3

4

5

6 a1

b1

2-Dimensional

Scenario

http://en.wikipedia.org/wiki/Image:Manhattan_distance.svg

5b-12
EPL646: Advanced Topics in Databases - Demetris Zeinalipour © (University of Cyprus)

Comparing 2 Vectors with

Cosine Similarity
from sentence_transformers import SentenceTransformer

from sklearn.metrics.pairwise import cosine_similarity

Initialize the model

model = SentenceTransformer('paraphrase-MiniLM-L6-v2')

Example sentences

sentence1 = "This is a sentence about machine learning."

sentence2 = "Machine learning is a fascinating topic."

Generate embeddings for both sentences

embedding1 = model.encode(sentence1)

embedding2 = model.encode(sentence2)

Compute cosine similarity between the two embeddings

similarity_score = cosine_similarity([embedding1], [embedding2])

Print the similarity score

print(f"Cosine Similarity: {similarity_score[0][0]}")

cos 0° = 1 // Perfect Match
cos 90 = 0 // No Match

Cosine similarity is a metric

used to measure how similar
two vectors (or documents,

in the context of text) are,

based on the cosine of the

angle between them. It is

widely used in information
retrieval, text mining, and

machine learning to

compare the similarity

between two objects.

Problem: If I have a database with N objects comparing all

vectors requires N comparisons which is slow! We need

some DB/index to speed up the computation

5b-13
EPL646: Advanced Topics in Databases - Demetris Zeinalipour © (University of Cyprus)

Chroma: A Simple Vector

Database
• Example of How It Works Internally

1.Embeddings and metadata are (tentatively)

stored in DuckDB (can be main memory too)

2.Chroma builds an Hierarchical navigable small

world (HNSW) index to speed up vector

similarity search.

– HNSW does the so called Approximate Nearest

Neighbor Search (will see this next)

3.DuckDB handles filtering on metadata.

4.Chroma queries the HNSW index for nearest

neighbors and refines results using metadata

filters.

5b-14
EPL646: Advanced Topics in Databases - Demetris Zeinalipour © (University of Cyprus)

Example: Chroma Hello World

(with persistency)
• By default, Chroma uses DuckDB as its embedded database for

efficient data storage and retrieval, but you can configure it to use

alternative backends.

– DuckDB – An in-process SQL OLAP database management ... a

column-oriented sqlite that supports parquet
import chromadb

Create a persistent ChromaDB instance using DuckDB as storage

chroma_client = chromadb.PersistentClient(path="./chroma_db")

Create a collection (automatically stored in DuckDB)

collection = chroma_client.get_or_create_collection(name="my_collection")

Add some example data

collection.add(
ids=["id1"],

embeddings=[[0.1, 0.2, 0.3]],
metadatas=[{"category": "example"}]

)

Query the collection

results = collection.query(
query_embeddings=[[0.1, 0.2, 0.3]],

n_results=1

)

print(results)

5b-15
EPL646: Advanced Topics in Databases - Demetris Zeinalipour © (University of Cyprus)

Chroma / In-Memory vs DuckDB

• Chroma stores its data in different ways depending on

the storage mode you choose:

• 1. In-Memory Mode (Default)

• If you initialize Chroma without specifying persistence, it keeps

everything in RAM.

• Data is lost when the process is stopped.

• Example:

import chromadb

chroma_client = chromadb.Client() # In-memory storage

• 2. Persistent Mode (Using DuckDB)

– Chroma stores data on disk using DuckDB as the underlying database.

– Metadata and vector embeddings are saved in a DuckDB file at the specified

path.

– chroma_client = chromadb.PersistentClient(path="./chroma_db") # Stores data in
./chroma_db

5b-16
EPL646: Advanced Topics in Databases - Demetris Zeinalipour © (University of Cyprus)

DuckDB: Columnar Embedded

OLAP Database

• DuckDB is a columnar database, making it highly

efficient for running analytical queries.

• It is embeeded (like SQLlite), so doesn’t run a a service

but part of the caller memory space

• It supports two main storage formats: its

native .duckdb format or open-standard file formats like

Parquet, which DuckDB reads and writes with

impressive efficiency

https://www.pracdata.io/p/duckdb-beyond-the-hype

https://duckdb.org/pdf/SIGMOD2019-demo-duckdb.pdf

5b-17
EPL646: Advanced Topics in Databases - Demetris Zeinalipour © (University of Cyprus)

Chroma Similarity Search

Example / DuckDB+Parquet
import chromadb

from chromadb.config import Settings

Step 1: Initialize Chroma client with a local storage path

client = chromadb.Client(Settings(chroma_db_impl="duckdb+parquet", persist_directory="./chroma_db"))

Step 2: Create or access an existing collection

collection = client.create_collection("example_collection") # You can also use .get_collection() if it already exists

Step 3: Define your data (for this example, we’ll use some simple sentences)

texts = [

"Chroma is an open-source vector database.",

"Chroma supports fast similarity search for machine learning applications.",

"You can store vectors and perform searches using Chroma."

]

Step 4: Insert the data into Chroma

You can use embeddings for real-world cases, here we’ll just insert the raw data for simplicity

Normally, you'd embed the text before inserting, but for the sake of the example, we'll skip that.

metadata = [{"text": text} for text in texts]

Insert into Chroma collection

collection.add(

documents=texts, # The raw text data

metadatas=metadata, # Optional metadata

ids=[str(i) for i in range(len(texts))] # Unique IDs for each document

)

Step 5: Verify the insertion by querying the collection

results = collection.query(query_texts=["What is Chroma?"], n_results=3)

print("Query Results:")

for result in results["documents"]:

print(result)

5b-18
EPL646: Advanced Topics in Databases - Demetris Zeinalipour © (University of Cyprus)

Hierarchical navigable small

world (HNSW)
• Approximate Nearest Neighbor Search

– Instead of exact matches, vector databases use

Approximate Nearest Neighbor (ANN) search to

find vectors that are most similar to a given query.

• HNSW resembles skip list that have a O(logn)

search

• HNSW howewer is a graph search method with

polylogarithmic T = O(logᵏn) search complexity

which uses greedy routing.

5b-19
EPL646: Advanced Topics in Databases - Demetris Zeinalipour © (University of Cyprus)

HNSW Query Routing Principles

• The search starts from the highest layer and proceeds to

one level below every time the local nearest neighbour is

greedily found among the layer nodes. Ultimately, the

found nearest neighbour on the lowest layer is the

answer to the query.

5b-20
EPL646: Advanced Topics in Databases - Demetris Zeinalipour © (University of Cyprus)

Libraries Implementing HNSW

• FAISS (Facebook AI Similarity Search) - Facebook

• Language: C++, Python

• Features: Optimized for both CPU and GPU-based searches, scalable

for large datasets.

• ScaNN (Scalable Nearest Neighbors) – Google / AlloyDB
• Language: Python

• Can handle large-scale data with high efficiency, supports multiple distance metrics.

• Hnswlib
• Language: Python, C++

• simplicity and speed.

• Annoy (Approximate Nearest Neighbors Oh Yeah)

• extensively in recommendation systems.

• It supports HNSW for indexing and is designed for large-scale applications.

• extensively in recommendation systems.

5b-21
EPL646: Advanced Topics in Databases - Demetris Zeinalipour © (University of Cyprus)

Vector Databases in the Wild

• HNSW Implementing by many vendors:

Milvus, Pinecone, Weaviate, Qdrant,

Vespa, Chroma .. even postgres with

pgvector !

https://github.com/pgvector/pgvector

5b-22
EPL646: Advanced Topics in Databases - Demetris Zeinalipour © (University of Cyprus)

LLMs, RAG and Vector

Databases
• LLMs (Large Language Models) are advanced AI

models trained on vast amounts of text data to understand

and generate human-like language.

– These models use deep learning, specifically transformers (like

GPT, BERT, and LLaMA), to process and generate text based on

input prompts.

• LLMs require re-training to incorporate new content. This

is expensive.

• ChatGPT and other systems allow uploading a variety of

files that undergo Retrieval-Augmented Generation

(RAG).

5b-23
EPL646: Advanced Topics in Databases - Demetris Zeinalipour © (University of Cyprus)

LLMs, RAG and Vector

Databases
• Retrieval – The model searches a knowledge base (e.g., documents,

databases, or vector stores) for relevant information. Augmentation – The

retrieved data is added to the model’s input context. Generation – A

language model (like GPT) generates a response using both the external

data and its internal knowledge.

https://medium.com/@akriti.upadhyay/unveiling-the-dynamics-of-vector-databases-in-ai-

landscape-0784ea0f2f50

5b-24
EPL646: Advanced Topics in Databases - Demetris Zeinalipour © (University of Cyprus)

Open Source LLMs

• Ollama is an open-source framework that enables

users to run and interact with large language models

(LLMs) locally on their machines.

– It simplifies downloading, managing, and running AI models

without requiring cloud services.

– Example Models: Mistral (French), Llama (Facebook), Falcon

(UAE), Qwen (Alibaba), Palm (Google), Grok (xAI), Deekseek

(Chinese)

– Integration with AI Marketplaces: Huggingface

https://chatucy.cs.ucy.ac.cy/

https://medium.com/@yugan

k.aman/top-10-open-source-

llm-models-and-their-uses-

6f4a9aced6af

	Slide 1: EPL646 – Advanced Topics in Databases
	Slide 2: Overview
	Slide 3: Vector Databases
	Slide 4: Vector Embeddings
	Slide 5: Text vs. Word Embeedings
	Slide 6: Example: Word Embeedings
	Slide 7: (Open) Sentence Embeedings
	Slide 8: Example: Sentence Embeeding with Sentence-Transformers
	Slide 9: Semantic Similarity Search
	Slide 10: Vector Comparison Underpinnings!
	Slide 11: Euclidean vs. Manhattan Distance
	Slide 12: Comparing 2 Vectors with Cosine Similarity
	Slide 13: Chroma: A Simple Vector Database
	Slide 14: Example: Chroma Hello World (with persistency)
	Slide 15: Chroma / In-Memory vs DuckDB
	Slide 16: DuckDB: Columnar Embedded OLAP Database
	Slide 17: Chroma Similarity Search Example / DuckDB+Parquet
	Slide 18: Hierarchical navigable small world (HNSW)
	Slide 19: HNSW Query Routing Principles
	Slide 20: Libraries Implementing HNSW
	Slide 21: Vector Databases in the Wild
	Slide 22: LLMs, RAG and Vector Databases
	Slide 23: LLMs, RAG and Vector Databases
	Slide 24: Open Source LLMs

