

Tracking down

Dario Bonfiglio *Marco Mellia* Michela Meo Nicolo' Ritacca Dario Rossi

école nationale supérieure des télécommunications

Agenda

- A few words about Skype
 - Known facts
 - Preliminary definitions
- Investigate Skype "Traffic"
 - Voice traffic
 - Reaction to network performance degradation
 - Signaling traffic
 - Signaling patterns & peer selection
 - Users' behavior
 - Please, see the paper

Why Skype ?

- Skype is very popular
 - More than 100M users, 5% of all VoIP traffic
 - Easy to use, many free services
 - voice / video / chat / data transfer over IP
- Understanding Skype is a challenging task
 - Closed design, proprietary solutions
 - Almost everything is encrypted
 - Uses a P2P architecture
 - Lot of different flavors

- Architecture
 - P2P design

- Architecture
 - P2P design

Service traffic

- Voice calls
- Video calls
- Chat
- Data transmission

- Architecture
 - P2P design

Service traffic

- Voice calls
- Video calls
- Chat
- Data transmission
- Skypeout/Skypein

- Architecture
 - P2P design

Service traffic

- Voice calls
- Video calls
- Chat

. . .

- Data transmission
- Skypeout/Skypein

Signaling traffic

- Login & auth.
- Look for buddies

Methodolody

Service traffic

- Small scale active testbed
- Controlled bandwidth, packet loss
- voice service, many Codecs, TCP/UDP traffic

Signaling traffic

- Passive measurement technique
- Adopt a black-box approach
- Inspect and quantify UDP signaling
- Classification framework:

D.Bonfiglio, M.Mellia, M.Meo, D.Rossi, P.Tofanelli, *Revealing Skype Traffic: When Randomness Plays with You*, SIGCOMM'07

Preliminary Definition

Useful information

- At installation, Skype chooses a port at random
- The port is never changed (unless forced by the user)
- All traffic multiplexed over the same socket (UDP preferably)

Skype peer

- A Skype peer can be identified by its endpoint
- Consider only peers that were ever observed making a call

(IP addr, UDP port)

Skype flow

- A sequence of packets originated from a Skype peer (and destined to another skype peer)
- Flow starts when the first packet is observed
- Flow ends when no packet is observed for a given inactivity timeout (200s)

Skype Source Model

Codec Impact

Service Traffic: Normal Condition

Service Traffic: Normal Condition

Service Traffic: Normal Condition

IPG [ms]

Transport Layer Impact

Service Traffic: TCP vs UDP

TCP/UDP have no impact

Network Impact

Service Traffic: Bandwidth Limit

Skype performs congestion control

Video Traffic

Signaling Traffic: Activity Pattern

Legend

- Consider a single client
- Each dot is a packet
- Top: outgoing, Bottom: incoming
- For every new peer, increment the ID
- For every old peer, use the previous ID

Rather different patterns emerge from the plot

Signaling Traffic: Activity Pattern

Probes

- Single packet
- Sent toward unknown peers
- Reply possibly follows
- No further traffic between the same peers pair
- Majority of the flows

Peer discovery is a continuous task

Signaling Traffic: Activity Pattern

Non-Probes

- Flows longer than one packet
- Series of single-packet flows
- Sent toward the same peer
- Carry most signaling bytes

Falk to super peers, notify

buddies of status change,

Signaling Traffic: All Peers

Probes

- Majority of the flows
- Non-probes
 - Carry most signaling bytes
- Signaling bandwidth
 - 95% generate <100 bps
 - Only 1% exceeds 1 Kbps
 - Signaling spread
 - 95% of peers contact
 40 peers (in 5 min)
 - 1% exceeds >75 (in 5 min)

Conclusions

Service traffic

- Active testbed
- Skype implements a congestion control
 - Aggressive with losses
 - Conservative with bottlenecks

- User Characterization
 - Number of calls per unit of time
 - Call duration for different services
 - Peer Lifetime
- Details are in the paper, not in this talk 😳

Signaling traffic

- Passive measurement
- Two different threads shapes the overlay
 - Probes
 - Non-Probes
- Signaling rate and spread
 - Very limited bitrate
 - Large number contacted peers

- Future Work
 - Extensive measurement in different networks
 - Campus LAN
 - ADSL installation
 - Cellular Network

Signaling Traffic: Peer Selection

RTT distance

- RTT between first request-reply packets
- Probe RTT smaller w.r.t.
 non-probe traffic

Geolocation breakdown

- Probes favor discovery of nearby hosts
- Non-probes driven by social network

Signaling Traffic: Peer Selection

Longitude

Signaling Traffic: Inferring Churn

