
4/4/22

1

Chapter 18 – Service-oriented Software Engineering

26/11/2014 Chapter 18 Service-oriented software engineering 1

1

Topics covered

² Service-oriented architectures

² RESTful services

² Service engineering

² Service composition

26/11/2014 Chapter 18 Service-oriented software engineering 2

2

Web services

² A web service is an instance of a more general notion of
a service:

“an act or performance offered by one party to another. Although
the process may be tied to a physical product, the performance
is essentially intangible and does not normally result in
ownership of any of the factors of production”.

² The essence of a service, therefore, is that the provision
of the service is independent of the application using the
service.

² Service providers can develop specialized services and
offer these to a range of service users from different
organizations.

26/11/2014 Chapter 18 Service-oriented software engineering 3

3

Services as reusable components

² A web service is:
§ A loosely coupled, reusable software component that encapsulates

discrete functionality, which may be distributed and programmatically
accessed. A web service is a service that is accessed using standard
Internet and XML-based protocols.

² A critical distinction between a service and a component as defined
in CBSE is that services are independent.
§ Services do not have a ‘requires’ interface.
§ Services rely on message-based communication with messages

expressed in XML.
² Services are platform and implementation-language independent.

Software systems can be constructed by composing local services
and external services from different providers.

26/11/2014 Chapter 18 Service-oriented software engineering 4

4

Benefits of a service-oriented approach

² Services can be offered by any service provider inside or
outside of an organisation so organizations can create
applications by integrating services from a range of
providers (e.g. a manufacturing company can link
directly to services provided by its suppliers).

² The service provider makes information about the
service public so that any authorised user can use the
service without negotiating about what the service does.

² Applications can delay the binding of services until they
are deployed or until execution. This means that
applications can be reactive and adapt their operation to
cope with changes to their execution environment.

26/11/2014 Chapter 18 Service-oriented software engineering 5

5

Benefits of a service-oriented approach

² Opportunistic construction of new services is possible. A
service provider may recognise new services that can be
created by linking existing services in innovative ways.

² Service users can pay for services according to their use
rather than their provision. Instead of buying a rarely-
used component, the application developers can use an
external service that will be paid for only when required.

² Applications can be made smaller, which is particularly
important for mobile devices with limited processing and
memory capabilities. Computationally-intensive
processing can be offloaded to external services.

26/11/2014 Chapter 18 Service-oriented software engineering 6

6

4/4/22

2

Services scenario

² An in-car information system provides drivers with
information on weather, road traffic conditions, local
information etc. This is linked to car audio system so that
information is delivered as a signal on a specific channel.

² The car is equipped with GPS receiver to discover its
position and, based on that position, the system
accesses a range of information services. Information
may be delivered in the driver’s specified language.

² The in-car software includes five modules that handle
communications involving the driver, GPS receiver and
car radio. The car communicates with external mobile
information services for a variety of data.

26/11/2014 Chapter 18 Service-oriented software engineering 7

7

A service-based, in-car information system

26/11/2014 Chapter 18 Service-oriented software engineering 8

User interface

Locator

Discovers car
position

Weather
info

Receives request
from user

Receiver

Receives
information stream

from services

Transmitter

Sends position and
information request

to services

Radio

Translates digital
info stream to
radio signal

In-car software system

Mobile Info Service

Facilities
info

Translator

Road
locator

Traffic
info

Collates information

Road traffic info

command
gps coord

gps
coord gps coordgps coord

Language
infoInfo

stream

Service discovery

Finds available
services

8

Advantage of SOA for this application

² It is not necessary to decide when the system is
programmed or deployed what service provider should
be used or what specific services should be accessed.
§ As the car moves around, the in-car software uses the service

discovery service to find the most appropriate information
service and binds to that.

§ Because of the use of a translation service, it can move across
borders and therefore make local information available to people
who don’t speak the local language.

26/11/2014 Chapter 18 Service-oriented software engineering 9

9

Service-oriented software engineering

² As significant a development as object-oriented
development.

² Service-oriented systems are essential to the cloud and
mobile systems.

² Building applications based on services allows
companies and other organizations to cooperate and
make use of each other’s business functions.

² Service-based applications may be constructed by
linking services from various providers using either a
standard programming language or a specialized
workflow language.

26/11/2014 Chapter 18 Service-oriented software engineering 10

10

Service-oriented architectures

26/11/2014 Chapter 18 Service-oriented software engineering 11

11

Service-oriented architectures

² Service-oriented architectures (SOA) is an architectural
style based on the idea that executable services can be
included in applications.

² A means of developing distributed systems where the
components are stand-alone services.

² Services have well-defined, published interfaces, on
which the appropriateness of the service is decided.

² Services may execute on different computers from
different service providers.

² Standard protocols have been developed to support
service communication and information exchange.

26/11/2014 Chapter 18 Service-oriented software engineering 12

12

4/4/22

3

Structure of a service-oriented architecture

Service
registry

Service
requestor

Service
provider

Service

Find Publish

Bind (SOAP)
(WSDL)

26/11/2014 Chapter 18 Service-oriented software engineering 13

(UDDI)

13

Characteristics and benefits of SOA

² Service providers design and implement services and specify the
interface to these services.

² They also publish information about these services in an accessible
registry.

² Service requestors (clients) discover the specification of services
and locate their providers. Then they can bind their application to
these services and communicate with them using internationally
agreed standards.

² Services can be provided locally or outsourced to external providers.

² Services are language-independent.

² Investment in legacy systems can be preserved.

² Inter-organisational computing is facilitated through simplified
information exchange.

26/11/2014 Chapter 18 Service-oriented software engineering 14

14

Web service standards

Transport (HTTP, HTTPS, SMTP, ...)

Messaging (SOAP)

Service definition (UDDI, WSDL)

Process (WS-BPEL)

Support (WS-Security, WS-Addressing, ...)

XML technologies (XML, XSD, XSLT,)

26/11/2014 Chapter 18 Service-oriented software engineering 15

15

Key standards

² SOAP
§ A message interchange standard that supports service communication.

Defines the essential and optional components of messages passed
between services.

² WSDL (Web Service Definition Language)
§ A standard for service interface definition. It sets out how the service

operations (operation names, parameters, and their types) and service
bindings should be defined.

² WS-BPEL
§ A standard for workflow languages used to define service composition

in the form of process programs involving several different services.
² UDDI (Universal Description, Discovery and Integration)

§ A standard that defines the components of a service specification,
intended to help potential users discover the existence of the service (by
means of searching associated service registries).

26/11/2014 Chapter 18 Service-oriented software engineering 16

16

Supporting standards

² WS-Reliable Messaging, a standard for message
exchange that ensures messages will be delivered once
and once only.

² WS-Security, a set of standards supporting web service
security, including standards that specify the definition of
security policies and standards that cover the use of
digital signatures.

² WS-Addressing, which defines how address information
should be represented in a SOAP message.

² WS-Transactions, which defines how transactions across
distributed services should be coordinated.

26/11/2014 Chapter 18 Service-oriented software engineering 17

17

Service-oriented software engineering

² Existing approaches to software engineering have to
evolve to reflect the service-oriented approach to
software development.
§ Service engineering. The development of dependable, reusable

services.
• Software development for reuse.

§ Software development with services. The development of
dependable software where services are the fundamental
components.

• Software development with reuse.

26/11/2014 Chapter 18 Service-oriented software engineering 18

18

4/4/22

4

Communication among services

² A service defines what it needs from another service by
setting out its requirements in a message, which is sent
to that service.

² The receiving service parses the message, carries out
the computation, and, upon completion, sends a reply,
as a message, to the requesting service.

² This service then parses the reply to extract the required
information.

² Unlike software components, services do not use remote
procedure or method calls to access functionality
associated with other services.

26/11/2014 Chapter 18 Service-oriented software engineering 19

19

Web service description language

² The service interface is defined in a service description
expressed in WSDL (Web Service Description
Language).

² The WSDL specification defines:
§ What operations the service supports and the format of the

messages that are sent and received by the service;
§ How the service is accessed – that is, the binding maps the

abstract interface onto a concrete set of protocols;
§ Where the service is located. This is usually expressed as a URI

(Universal Resource Identifier).

26/11/2014 Chapter 18 Service-oriented software engineering 20

20

Organization of a WSDL specification

Intro

Abstract interface

Concrete
implementation

WSDL service definition

XML namespace declarations

Type declarations
Interface declarations
Message declarations

Binding declarations
Endpoint declarations

26/11/2014 Chapter 18 Service-oriented software engineering 21

21

WSDL specification components

² The ‘what’ part of a WSDL document, called an interface,
specifies what operations the service supports, and
defines the format of the messages that are sent and
received by the service.

² The ‘how’ part of a WSDL document, called a binding,
maps the abstract interface to a concrete set of
protocols. The binding specifies the technical details of
how to communicate with a Web service.

² The ‘where’ part of a WSDL document describes the
location of a specific Web service implementation (its
endpoint).

26/11/2014 Chapter 18 Service-oriented software engineering 22

22

The WSDL conceptual model

² The WSDL conceptual model defines the elements of a service
expressed in XML and provided in different files:
§ An introductory part that usually defines the XML namespaces used and

that may include a documentation section with more information about
the service.

§ An optional description of the types used in the messages exchanged.
§ A description of the service interface, that is, the operations that the

service provides for other services or users.
§ A description of the input and output messages processed by the

service.
§ A description of the binding used by the service, that is, the messaging

protocol that will be used to send and receive messages (e.g. SOAP).
§ An endpoint specification that is the physical location of the service,

expressed as a URI—the address of a resource that can be accessed
over the Internet.

26/11/2014 Chapter 18 Service-oriented software engineering 23

23

Part of a WSDL description for a web service

26/11/2014 Chapter 18 Service-oriented software engineering 24

Define some of the types used. Assume that the namespace prefixes ‘ws’
refers to the namespace URI for XML schemas and the namespace prefix
associated with this definition is weathns.
<types>

<xs: schema targetNameSpace = “http://.../weathns”
xmlns: weathns = “http://…/weathns” >
<xs:element name = “PlaceAndDate” type = “pdrec” />
<xs:element name = “MaxMinTemp” type = “mmtrec” />
<xs: element name = “InDataFault” type = “errmess” />

<xs: complexType name = “pdrec”
<xs: sequence>
<xs:element name = “town” type = “xs:string”/>
<xs:element name = “country” type = “xs:string”/>
<xs:element name = “day” type = “xs:date” />
</xs:complexType>
Definitions of MaxMinType and InDataFault here

</schema>
</types>

24

4/4/22

5

Part of a WSDL description for a web service

26/11/2014 Chapter 18 Service-oriented software engineering 25

Now define the interface and its operations. In this case, there is only a single
operation to return maximum and minimum temperatures.
<interface name = “weatherInfo” >

<operation name = “getMaxMinTemps” pattern = “wsdlns: in-out”>
<input messageLabel = “In” element = “weathns: PlaceAndDate” />
<output messageLabel = “Out” element = “weathns:MaxMinTemp” />
<outfault messageLabel = “Out” element = “weathns:InDataFault” />

</operation>
</interface>

25

Part of a WSDL description for a web service

² The first part shows part of the element and type
definition that is used in the service specification. This
defines the elements PlaceAndDate, MaxMinTemp,
and InDataFault.

² The second part of the description shows how the
service interface is defined. The service weatherInfo
has a single operation, although there are no restrictions
on the number of operations that may be defined. The
weatherInfo operation has an associated in-out
pattern meaning that it takes one input message and
generates one output message (more patterns are
available such as in-only, out-in, out-only, etc.).

26/11/2014 Chapter 18 Service-oriented software engineering 26

26

RESTful services

26/11/2014 Chapter 18 Service-oriented software engineering 27

27

RESTful web services

² Current web services standards have been criticized as
‘heavyweight’ standards that are over-general and inefficient,
as they try to cope with the development of complex services,
involving dynamic binding, control for quality and
dependability, etc.

² REST (REpresentational State Transfer) is an architectural
style based on transferring representations of resources from
a server to a client.

² This style underlies the web as a whole and is simpler than
SOAP/WSDL for implementing web services.

² RESTful services involve a lower overhead than so-called ‘big
web services’ and are used by many organizations
implementing service-based systems.

26/11/2014 Chapter 18 Service-oriented software engineering 28

28

Resources

² The fundamental element in a RESTful architecture is a
resource.

² Essentially, a resource is simply a data element such as
a catalog, a medical record or a document such as a
book chapter.

² In general, resources may have multiple representations
i.e. they can exist in different formats.
§ MS WORD (for editing)
§ PDF (for presentation)
§ Quark Xpress (for publishing)

26/11/2014 Chapter 18 Service-oriented software engineering 29

29

Resource operations

² Create – bring the resource into existence

² Read – return a representation of the resource

² Update – change the value of the resource

² Delete – make the resource inaccessible

26/11/2014 Chapter 18 Service-oriented software engineering 30

30

4/4/22

6

Resources and actions

26/11/2014 Chapter 18 Service-oriented software engineering 31

Resource R

CREATE

UPDATE

READDELETE Web-accessible
resource R

POST

PUT

GETDELETE

URL

(a) General resource actions (b) Web resources

31

Operation functionality

² POST is used to create a resource. It has associated
data that defines the resource.

² GET is used to read the value of a resource and return
that to the requestor in the specified representation, such
as XHTML, that can be rendered in a web browser.

² PUT is used to update the value of a resource.

² DELETE is used to delete the resource.

26/11/2014 Chapter 18 Service-oriented software engineering 32

32

Resource access

² When a RESTful approach is used, the data is exposed
and is accessed using its URL.

² Therefore, the weather data for each place in the
database, might be accessed using URLs such as:
§ http://weather-info-example.net/temperatures/boston

http://weather-info-example.net/temperatures/edinburgh

² Invokes the GET operation and returns a list of
maximum and minimum temperatures.

² To request the temperatures for a specific date, a URL
query is used:
§ http://weather-info-

example.net/temperatures/edinburgh?date=20140226
26/11/2014 Chapter 18 Service-oriented software engineering 33

33

Query results

² The response to a GET request in a RESTful service
may include URLs.

² If the response to a request is a set of resources, then
the URL of each of these may be included.
§ http://weather-info-example.net/temperatures/edinburgh-scotland

http://weather-info-example.net/temperatures/edinburgh-
australia
http://weather-info-example.net/temperatures/edinburgh-
maryland

26/11/2014 Chapter 18 Service-oriented software engineering 34

34

Difference between RESTful and SOAP-based
services

² RESTful services are not exclusively XML-based. When
a resource is requested, created, or changed, the
representation may be specified.

² This is important for RESTful services because
representations such as JSON (Javascript Object
Notation), as well as XML, may be used.

² These can be processed more efficiently than XML-
based notations.

² RESTful services have become more widely used over
the past few years because of the widespread use of
mobile devices that have limited processing capabilities.

26/11/2014 Chapter 18 Service-oriented software engineering 35

35

Disadvantages of RESTful approach

² When a service has a complex interface and is not a
simple resource, it can be difficult to design a set of
RESTful services to represent this.

² There are no standards for RESTful interface description
so service users must rely on informal documentation to
understand the interface.

² When you use RESTful services, you have to implement
your own infrastructure for monitoring and managing the
quality of service and the service reliability.

² However, it is often possible to provide both SOAP-
based and RESTful interfaces to the same service or
resource.

26/11/2014 Chapter 18 Service-oriented software engineering 36

36

http://weather-info-example.net/temperatures/boston
http://weather-info-example.net/temperatures/edinburgh
http://weather-info-example.net/temperatures/edinburgh?date=20140226
http://weather-info-example.net/temperatures/edinburgh-scotland
http://weather-info-example.net/temperatures/edinburgh-australia
http://weather-info-example.net/temperatures/edinburgh-maryland

4/4/22

7

RESTful and SOAP-based APIs

26/11/2014 Chapter 18 Service-oriented software engineering 37

Resource
R

Restful API

SOAP-based
API

Service
requestor 1

Service
requestor 2

37

Service engineering

26/11/2014 Chapter 18 Service-oriented software engineering 38

38

Service engineering

² The process of developing services for reuse in service-
oriented applications.

² The service has to be designed as a reusable
abstraction that can be used in different systems.

² Generally useful functionality associated with that
abstraction must be designed and the service must be
robust and reliable.

² The service must be documented so that it can be
discovered and understood by potential users.

26/11/2014 Chapter 18 Service-oriented software engineering 39

39

The service engineering process

Service design
Service

candidate
identification

Service
implementation
and deployment

Service
requirements

Service interface
specification

Validated and
deployed service

26/11/2014 Chapter 18 Service-oriented software engineering 40

40

Stages of service engineering

² Service candidate identification, where you identify
possible services that might be implemented and define
the service requirements.

² Service design, where you design the logical service
interface and its implementation interfaces (SOAP and/or
RESTful).

² Service implementation and deployment, where you
implement and test the service and make it available for
use.

² The starting point for this process will often be an
existing service or a component that is to be converted
to a service.

26/11/2014 Chapter 18 Service-oriented software engineering 41

41

Service candidate identification

² Services should support business processes.

² Service candidate identification involves understanding
an organization’s business processes to decide which
reusable services could support these processes.

² Three fundamental types of service:
§ Utility services that implement general functionality used by

different business processes (e.g. currency converter).
§ Business services that are associated with a specific business

function (e.g. student registration in a university).
§ Coordination services that support composite processes (e.g. an

ordering service in a company that allows orders to be placed
with suppliers, goods accepted, and payments made).

26/11/2014 Chapter 18 Service-oriented software engineering 42

42

4/4/22

8

Task and entity-oriented services

² Task-oriented services are those associated with some
activity.

² Entity-oriented services are like objects. They are
associated with system resource, which is a business
entity such as a job application form.

² Utility or business services may be entity- or task-
oriented, coordination services are always task-oriented.

26/11/2014 Chapter 18 Service-oriented software engineering 43

43

Service classification

Utility Business Coordination

Task Currency converter
Employee locator

Validate claim form
Check credit rating

Process expense
claim
Pay external supplier

Entity Document style
checker
Web form to XML
converter

Expenses form
Student application
form

26/11/2014 Chapter 18 Service-oriented software engineering 44

44

Service identification

² Is the service associated with a single logical entity used
in different business processes?

² Is the task one that is carried out by different people in
the organisation? Can this fit with a RESTful model?

² Is the service independent? That is, to what extent does
it rely on the availability of other services?

² Does the service have to maintain state? Is a database
required? Stateless services are easier to reuse.

² Could the service be used by clients outside the
organisation?

² Are different users of the service likely to have different
non-functional requirements?

26/11/2014 Chapter 18 Service-oriented software engineering 45

45

Service identification example

² A large company, which sells computer equipment, has arranged
special prices for approved configurations for some customers.

² To facilitate automated ordering, the company wishes to produce a
catalog service that will allow customers to select the equipment that
they need.

² Unlike a consumer catalog, orders are not placed directly through a
catalog interface. Instead, goods are ordered through the web-
based procurement system of each company that accesses the
catalog as a web service.

² Most companies have their own budgeting and approval procedures
for orders and their own ordering process must be followed when an
order is placed.

26/11/2014 Chapter 18 Service-oriented software engineering 46

46

Catalog services

² Created by a supplier to show which good can be
ordered from them by other companies.

² Service requirements:
§ Specific version of catalogue should be created for each client.
§ Catalogue shall be downloadable.
§ The specification and prices of up to 6 items may be compared.
§ Browsing and searching facilities shall be provided.
§ A function shall be provided that allows the delivery date for

ordered items to be predicted.
§ Virtual orders shall be supported which reserve the goods for 48

hours to allow a company order to be placed.

26/11/2014 Chapter 18 Service-oriented software engineering 47

47

Catalogue: Non-functional requirements

² Access to the catalog service shall be restricted to
employees of accredited organizations.

² The prices and configurations offered to each customer
shall be confidential, and access to these shall only be
provided to employees of that customer.

² The catalog shall be available without disruption of
service from 0700 GMT to 1100 GMT.

² The catalog service shall be able to process up to 100
requests per second peak load.

26/11/2014 Chapter 18 Service-oriented software engineering 48

48

4/4/22

9

Functional descriptions of catalog service
operations

Operation Description

MakeCatalog Creates a version of the catalog tailored for a specific
customer. Includes an optional parameter to create a
downloadable PDF version of the catalog.

Lookup Displays all of the data associated with a specified catalog
item.

Search This operation takes a logical expression and searches the
catalog according to that expression. It displays a list of all
items that match the search expression.

26/11/2014 Chapter 18 Service-oriented software engineering 49

49

Functional descriptions of catalog service
operations

Operation Description

Compare Provides a comparison of up to six characteristics (e.g.,
price, dimensions, processor speed, etc.) of up to four
catalog items.

CheckDelivery Returns the predicted delivery date for an item if
ordered that day.

MakeVirtualOrder Reserves the number of items to be ordered by a
customer and provides item information for the
customer’s own procurement system.

26/11/2014 Chapter 18 Service-oriented software engineering 50

50

Service interface design

² Involves thinking about the operations associated with
the service and the messages exchanged.

² The number of messages exchanged to complete a
service request should normally be minimised.

² If SOAP-based services are used, you have to design
the input and output messages.

² If RESTful services are used, you have to think about the
resources required and how the standard operations
should be used to implement the service operations.

² Service state information may have to be included in
messages.

26/11/2014 Chapter 18 Service-oriented software engineering 51

51

Interface design stages

² Logical interface design
§ Starts with the service requirements and defines the operation

names and parameters associated with the service. Exceptions
should also be defined.

² Message design (SOAP)
§ For SOAP-based services, design the structure and organisation

of the input and output messages. Notations such as the UML
are a more abstract representation than XML.

§ The logical specification is converted to a WSDL description.

² Interface design (REST)
§ Design how the required operations map onto REST operations

and what resources are required.

26/11/2014 Chapter 18 Service-oriented software engineering 52

52

Catalog interface design

Operation Inputs Outputs Exceptions

MakeCatalog mcIn
Company id
PDF-flag

mcOut
URL of the catalog
for that company

mcFault
Invalid company id

Lookup lookIn
Catalog URL
Catalog number

lookOut
URL of page with the
item information

lookFault
Invalid catalog
number

Search searchIn
Catalog URL
Search string

searchOut
URL of web page with
search results

searchFault
Badly formed search
string

26/11/2014 Chapter 18 Service-oriented software engineering 53

53

Catalog interface design

Operation Inputs Outputs Exceptions

Compare compIn
Catalog URL
Entry attribute (up to
6)
Catalog number (up
to 4)

compOut
URL of page
showing comparison
table

compFault
Invalid company id
Invalid catalog
number
Unknown attribute

CheckDelivery cdIn
Company id
Catalog number
Number of items
required

cdOut
Catalog number
Expected delivery
date

cdFault
Invalid company id
No availability
Zero items requested

MakeVirtualOrder poIn
Company id
Number of items
required
Catalog number

poOut
Catalog number
Number of items
required
Predicted delivery
date
Unit price estimate
Total price estimate

poFault
Invalid company id
Invalid catalog
number
Zero items requested

26/11/2014 Chapter 18 Service-oriented software engineering 54

54

4/4/22

10

Definition of input and output messages

² In some cases, a textual description of the operations
and their inputs and outputs is all that is required. The
detailed realization of the service is left as an
implementation decision.

² Sometimes, however, you need to have a more detailed
design, and a detailed interface description can be
specified in a graphical notation such as the UML or in a
readable description format such as JSON.

² The following figure describes the inputs and outputs for
the checkDelivery operation and shows how you can
use the UML to describe the interface in detail.

26/11/2014 Chapter 18 Service-oriented software engineering 55

55

UML definition of input and output messages

26/11/2014 Chapter 18 Service-oriented software engineering 56

cdIn

cID: string
catNum: string
numItems: integer

size (cID) = 6
size (catNum) = 10
numItems > 0

cdOut

catNum: string
delivDate: date

size (catNum) = 10
delivDate > Today

cdFault

errCode: integer

Invalid company id
errCode=1

Invalid catalog number
errCode = 2

No availability
errCode = 3

Zero items requested
errCode = 4

56

RESTful interface

² There should be a resource representing a company-
specific catalog. This should have a URL of the form
<base catalog>/<company name> and should be
created using a POST operation.

² Each catalog item should have its own URL of the form:
§ <base catalog>/<company name>/<item identifier>.

² The GET operation is used to retrieve items.
§ Lookup is implemented by using the URL of an item in a catalog

as the GET parameter.
§ Search is implemented by using GET with the company catalog

as the URL and the search string as a query parameter. This
GET operation returns a list of URLs of the items matching the
search.

26/11/2014 Chapter 18 Service-oriented software engineering 57

57

RESTful interface

² The Compare operation can be implemented as a
sequence of GET operations, to retrieve the individual
items, followed by a POST operation to create the
comparison table and a final GET operation to return this
to the user.

² The CheckDelivery and MakeVirtualOrder operations
require an additional resource, representing a virtual
order.
§ A POST operation is used to create this resource with the

number of items required. The company id is used to
automatically fill in the order form and the delivery date is
calculated. This can then be retrieved using a GET operation.

26/11/2014 Chapter 18 Service-oriented software engineering 58

58

Service implementation and deployment

² Programming services using a standard programming
language or a workflow language.

² Services then have to be tested by creating input
messages and checking that the output messages
produced are as expected.

² Deployment involves publicising the service and
installing it on a web server. Current servers provide
support for service installation.

26/11/2014 Chapter 18 Service-oriented software engineering 59

59

Legacy system services

² Services can be implemented by implementing a service
interface to existing legacy systems.

² Legacy systems offer extensive functionality and this can
reduce the cost of service implementation.

² External applications can access this functionality
through the service interfaces.

26/11/2014 Chapter 18 Service-oriented software engineering 60

60

4/4/22

11

Service descriptions

² Information about your business, contact details, etc.
This is important for trust reasons. Users of a service
have to be confident that it will not behave maliciously.

² An informal description of the functionality provided by
the service. This helps potential users to decide if the
service is what they want.

² A description of how to use the service (informal textual
description of the input and output parameters or for
more complex SOAP-based services, the WSDL
description).

² Subscription information that allows users to register for
information about updates to the service.

26/11/2014 Chapter 18 Service-oriented software engineering 61

61

Service composition

26/11/2014 Chapter 18 Service-oriented software engineering 62

62

Software development with services

² Existing services are composed and configured to create
new composite services and applications.

² These may be integrated with a user interface
implemented in a browser to create a web application, or
they may be used as components in some other service
composition.

² The basis for service composition is often a workflow
§ Workflows are logical sequences of activities that, together,

model a coherent business process.
§ For example, provide a travel reservation service which allows

flights, car hire and hotel bookings to be coordinated.

26/11/2014 Chapter 18 Service-oriented software engineering 63

63

Vacation package workflow

26/11/2014 Chapter 18 Service-oriented software engineering 64

Book
flights

Book
hotel

Arrange
car or taxi

Browse
attractions

Book
attractions

Arrival/departure
dates/times Hotel location

Dates/preferences

64

Service construction by composition

26/11/2014 Chapter 18 Service-oriented software engineering 65

Formulate
outline

workflow

Discover
services

Workflow
design

Service list Service
specifications

Workflow
design

Select
services

Refine
workflow

Create
workflow
program

Executable
workflow

Test
service

Deployable
service

65

Construction by composition

² Formulate outline workflow
§ In this initial stage of service design, you use the requirements

for the composite service as a basis for creating an ‘ideal’
service design.

² Discover services
§ During this stage of the process, you search service registries or

catalogs to discover what services exist, who provides these
services and the details of the service provision.

² Select possible services
§ Your selection criteria will obviously include the functionality of

the services offered. They may also include the cost of the
services and the quality of service (responsiveness, availability,
etc.) offered.

26/11/2014 Chapter 18 Service-oriented software engineering 66

66

4/4/22

12

Construction by composition

² Refine workflow
§ This involves adding detail to the abstract description and

perhaps adding or removing workflow activities.

² Create workflow program
§ During this stage, the abstract workflow design is transformed to

an executable program and the service interface is defined. You
can use a conventional programming language, such as Java or
a workflow language, such as WS-BPEL.

² Test completed service or application
§ The process of testing the completed, composite service is more

complex than component testing in situations where external
services are used.

26/11/2014 Chapter 18 Service-oriented software engineering 67

67

Workflow design and implementation

² WS-BPEL is an XML-standard for workflow specification.
However, WS-BPEL descriptions are long and
unreadable.

² Graphical workflow notations, such as BPMN, are more
readable and WS-BPEL can be generated from them.

² In inter-organisational systems, separate workflows are
created for each organisation and linked through
message exchange.

² Workflows can be used with both SOAP-based and
RESTful services.

26/11/2014 Chapter 18 Service-oriented software engineering 68

68

A fragment of a hotel booking workflow

Hotels.
GetRequirements

Customer

Hotels.
CheckAvailability

Hotels.
NoAvailability

Hotels.
ReserveRooms

Hotels.
ConfirmReservation

Retry

Cancel

Rooms OK

No rooms

26/11/2014 Chapter 18 Service-oriented software engineering 69

69

A simplified BPMN workflow model for the hotel
booking scenario

² The model assumes the existence of a Hotels service
with associated operations called GetRequirements,
CheckAvailability, ReserveRooms,
NoAvailability, ConfirmReservation, and
CancelReservation.

² The process involves getting requirements from the
customer, checking room availability, and then, if rooms
are available, making a booking for the required dates.

² This model introduces some of the core concepts of
BPMN that are used to create workflow models.

26/11/2014 Chapter 18 Service-oriented software engineering 70

70

A simplified BPMN workflow model for the hotel
booking scenario

² Rectangles with rounded corners represent activities. An
activity can be executed by a human or by an automated
service.

² Circles represent discrete events. An event is something
that happens during a business process. A simple circle
is used to represent a starting event and a darker circle
to represent an end event.

² A diamond is used to represent a gateway. A gateway is
a stage in the process where some choice is made.

² A solid arrow shows the sequence of activities; a dashed
arrow represents message flow between activities.

26/11/2014 Chapter 18 Service-oriented software engineering 71

71

Interacting or multiple workflows (involving
more than one organization)

Request
processor

Setup job
parameters

Download
data

Start
computation

Store
results

Report
completion

Restart

Fail

Se
tu

p
Co

m
pu

ta
tio

n

Check
Availability

Allocate
resources

Initialise Compute

Return
results

OK

No processor

OK

Ve
ct

or
Pr

oc
Se

rv
ic

e

26/11/2014 Chapter 18 Service-oriented software engineering 72

72

4/4/22

13

Interacting or multiple workflows (involving
more than one organization)

² This example is drawn from high-performance
computing, where hardware is offered as a service.

² Services are created to provide access to high-
performance computers to a geographically distributed
user community.
§ In this example, a vector-processing computer (a machine that

can carry out parallel computations on arrays of values) is
offered as a service (VectorProcService) by a research
laboratory. This is accessed through another service called
SetupComputation.

² This process is represented in BPMN by developing
separate workflows for each of the organizations
involved with interactions between them.

26/11/2014 Chapter 18 Service-oriented software engineering 73

73

Testing service compositions

² Testing is intended to find defects and demonstrate that
a system meets its functional and non-functional
requirements.

² Service testing is difficult as (external) services are
‘black-boxes’. Testing techniques that rely on the
program source code cannot be used.

26/11/2014 Chapter 18 Service-oriented software engineering 74

74

Service testing problems

² External services may be modified by the service provider
thus invalidating tests which have been completed.

² Dynamic binding means that the service used in an
application may vary – the application tests are not, therefore,
reliable.

² The non-functional behaviour of the service is unpredictable
because it depends on load.

² If services have to be paid for as used, testing a service may
be expensive.

² It may be difficult to invoke compensating actions in external
services as these may rely on the failure of other services
which cannot be simulated.

26/11/2014 Chapter 18 Service-oriented software engineering 75

75

Key points

² Service-oriented architecture is an approach to software engineering
where reusable, standardized services are the basic building blocks
for application systems.

² Services may be implemented within a service-oriented architecture
using a set of XML-based web service standards. These include
standards for service communication, interface definition and service
enactment in workflows.

² Alternatively, a RESTful architecture may be used which is based on
resources and standard operations on these resources.

² A RESTful approach uses the http and https protocols for service
communication and maps operations on the standard http verbs
POST, GET, PUT and DELETE.

26/11/2014 Chapter 18 Service-oriented software engineering 76

76

Key points

² Utility services provide general-purpose functionality;
business services implement part of a business process;
coordination services coordinate service execution.

² Service engineering involves identifying candidate
services for implementation, defining service interfaces
and implementing, testing and deploying services.

² The development of software using services involves
composing and configuring services to create new
composite services and systems.

² Graphical workflow languages, such as BPMN, may be
used to describe a business process and the services
used in that process.

26/11/2014 Chapter 18 Service-oriented software engineering 77

77

