
Chapter 2
Application Layer – Part B

Peer-to-Peer Applications

 Adapted from Computer Networking: A Top Down Approach, Jim Kurose, Keith Ross

Addison-Wesley

Application Layer 2-2

Outline

2.6 P2P applications

 Introduction

 P2P Architectures

 P2P Protocols

 Case Study: BitTorrent

What is P2P?

 “the sharing of computer resources and services
by direct exchange of information”

Application Layer 2-3

What is P2P?

 “P2P is a class of applications that take advantage
of resources – storage, cycles, content, human
presence – available at the edges of the Internet.
Because accessing these decentralized resources
means operating in an environment of unstable
and unpredictable IP addresses P2P nodes must
operate outside the DNS system and have
significant, or total autonomy from central
servers”

Application Layer 2-4

What is P2P?

 “A distributed network architecture may be
called a P2P network if the participants share a
part of their own resources. These shared
resources are necessary to provide the service
offered by the network. The participants of such a
network are both resource providers and
resource consumers”

Application Layer 2-5

What is a peer?

 “…an entity with capabilities similar to
other entities in the system.”

Application Layer 2-6

Application Layer 2-7

P2P architecture

 no always-on server

 arbitrary end systems
directly communicate

 peers request service from
other peers, provide service
in return to other peers

 self scalability – new
peers bring new service
capacity, as well as new
service demands

 peers are intermittently
connected and change IP
addresses

 complex management

peer-peer

Application Layer 2-8

Client-server architecture

server:
 always-on host

 permanent IP address

 data centers for scaling

clients:
 communicate with server

 may be intermittently
connected

 may have dynamic IP
addresses

 do not communicate directly
with each other

client/server

P2P Network Characteristics

 Clients are also servers and routers
 Nodes contribute content, storage, memory, CPU

 Nodes are autonomous (no administrative authority)

 Network is dynamic: nodes enter and leave the network
“frequently”

 Nodes collaborate directly with each other (not through
well-known servers)

 Nodes have widely varying capabilities

Application Layer 2-9

P2P Goals and Benefits

 Efficient use of resources
 Unused bandwidth, storage, processing power at the “edge of the network”

 Scalability
 No central information, communication and computation bottleneck

 Aggregate resources grow naturally with utilization

 Reliability
 Replicas

 Geographic distribution

 No single point of failure

 Ease of administration
 Nodes self-organize

 Built-in fault tolerance, replication, and load balancing

 Increased autonomy

 Anonymity – Privacy
 not easy in a centralized system

 Dynamism
 highly dynamic environment

 ad-hoc communication and collaboration

Application Layer 2-10

P2P Applications

 File sharing (Napster, Gnutella, Kazaa, others?)

 Multiplayer games (Unreal Tournament, DOOM)

 Collaborative applications (ICQ, shared whiteboard)

 Distributed computation (Seti@home)

 Ad-hoc networks

Application Layer 2-11

Application Layer 2-12

File distribution: client-server vs P2P

Question: how much time to distribute file (size F) from
one server to N peers?
 peer upload/download capacity is limited resource

us

uN

dN

server

network (with abundant

bandwidth)

file, size F

us: server upload
capacity

ui: peer i upload
capacity

di: peer i download
capacityu2 d2

u1 d1

di

ui

Application Layer 2-13

File distribution time: client-server

 server transmission: must
sequentially send (upload) N
file copies:

 time to send one copy: F/us

 time to send N copies: NF/us

increases linearly in N

time to distribute F

to N clients using

client-server approach
Dc-s > max{NF/us,,F/dmin}

 client: each client must
download file copy
 dmin = min client download rate

 min client download time: F/dmin

us

network

di

ui

F

Application Layer 2-14

File distribution time: P2P

 server transmission: must
upload at least one copy

 time to send one copy: F/us

time to distribute F

to N clients using

P2P approach

us

network

di

ui

F

DP2P > max{F/us,,F/dmin,,NF/(us + Sui)}

 client: each client must
download file copy
 min client download time: F/dmin

 clients: as aggregate must download NF bits

 max upload rate (limting max download rate) is us + Sui

… but so does this, as each peer brings service capacity

increases linearly in N …

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30 35

N

M
in

im
u
m

 D
is

tr
ib

u
ti
o
n
 T

im
e P2P

Client-Server

Client-server vs. P2P: example

client upload rate = u, F/u = 1 hour, us = 10u, dmin ≥ us

Application Layer 2-15

Introduction to P2P

 Main operations in P2P systems
 Join the P2P overlay network

 Resource discovery

• Publish resources to be shared (optional)

• Discover resource

 Resource retrieval

Application Layer 16

17Application Layer

P2P protocols
 Distributed network architecture
 A virtual overlay network at the application layer

 Participants act as both a client and a server

P1

R1

R2 R3
P2

P1

P2

Physical Network

Overlay Network

Node: peers

Edge: TCP/UDP connection

2-17

P2P Operation

Application Layer 18

TCP/IP

P2P Substrate

Network

storage

Event

notification

Internet

self-organizing

overlay network

P2P application layer
?

P2P Architectures

 Three types of P2P systems
 Centralized

 Decentralized and unstructured

 Decentralized but structured

 Some P2P systems also adopt hybrid architecture
 Hybrid of centralized and decentralized (unstructured

or structured)

Application Layer 19

Centralized index

file transfer is decentralized,
but locating content is highly
centralized

original “Napster” design

1) when peer connects, it
informs central server:
 IP address

 content

2) Alice queries for “Hey
Jude”

3) Alice requests file from Bob

Application Layer 2-20

centralized
directory server

peers

Alice

Bob

1

1

1

12

3

Centralized

 Benefits:

 Low per-node state

 Limited bandwidth usage

 Short location time

 High success rate

 Fault tolerant

 Drawbacks:

 Single point of failure

 Limited scale

 Possibly unbalanced load
 copyright infringement

Application Layer 2-21

Bob Alice

JaneJudy

Napster
 program for sharing files over the Internet

 a “disruptive” application/technology?

 history:

 5/99: Shawn Fanning (freshman, Northeasten U.) founds Napster Online
music service

 12/99: first lawsuit

 3/00: 25% UWisc traffic Napster

 2000: est. 60M users

 2/01: US Circuit Court of

Appeals: Napster knew users
violating copyright laws

 7/01: # simultaneous online users:

Napster 160K,
Gnutella: 40K,
Morpheus: 300K

Application Layer 2-22

Napster: how does it work

Application-level, client-server protocol over point-to-point TCP

Four steps:

 Connect to Napster server

 Upload your list of files (push) to server.

 Give server keywords to search the full list with.

 Select “best” of correct answers. (pings)

Application Layer 2-23

Napster

Application Layer 2-24

napster.com

users

File list is

uploaded
1.

Napster

Application Layer 2-25

napster.com

user

Request
and

results

User

requests

search at

server.

2.

Napster

Application Layer 2-26

napster.com

user

pings
pings

User pings

hosts that

apparently

have data.

Looks for best

transfer rate.

3.

Napster

Application Layer 2-27

napster.com

user

Retrieves
file

User retrieves

file

4.

Decentralized and Unstructured

P2P
 Floods query messages to peers to search for shared

objects
 No central server, no publication of shared objects

 Limited-scope flooding to reduce flooding messages

 A query hit message is returned along the reverse path
back to the inquirer

Application Layer 28

Query

Query

QueryQuery

Query

Query Hit

Query Hit

Query Hit

Download

Example: Gnutella

Decentralized and Unstructured

P2P
 Join procedure
 A newcomer sends a join message to a peer already on

the overlay.

 The existing peer replies its identity as well as a list of
its neighbors

• May also forward the join message to its neighbors

 Upon receiving join reply messages, the newcomer
knows more peers on the overlay.

Application Layer 29

Decentralized and Unstructured

P2P
 Advantages

 Fully distributed

 Reliable, fault-tolerant

 No single point of failure

 Disadvantages

 Excessive query traffic make it not scalable

 May fail to find content that is actually in the
system

 Super peer may become overloaded or been
attacked

Application Layer 30

Gnutella: Query flooding

Application Layer 2-31

Query

QueryHit

Query

QueryHit

File transfer:

HTTP
 Query message
sent over existing TCP
connections

 peers forward
Query message

 QueryHit
sent over
reverse
path

Gnutella: Peer joining

1. joining peer Alice must find another peer in Gnutella
network: use list of candidate peers

2. Alice sequentially attempts TCP connections with
candidate peers until connection setup with Bob

3. Flooding: Alice sends Ping message to Bob; Bob forwards
Ping message to his overlay neighbors (who then
forward to their neighbors….)

 peers receiving Ping message respond to Alice with
Pong message

4. Alice receives many Pong messages, and can then setup
additional TCP connections

Application Layer 2-32

Gnutella

Searching by flooding:

 If you don’t have the file you
want, query 7 of your neighbors.

 If they don’t have it, they contact
7 of their neighbors, for a
maximum hop count of 10.

 Requests are flooded, but there
is no tree structure.

 No looping but packets may be
received twice.

 Reverse path forwarding

Application Layer 2-33
* Figure from http://computer.howstuffworks.com/file-sharing.htm

Gnutella

Application Layer 2-34

fool.* ?

TTL = 2

Gnutella

Application Layer 2-35

TTL = 1

TTL = 1

IPX:fool.her

fool.herX

TTL = 1

Gnutella

Application Layer 2-36

fool.you

fool.me
Y

IPY:fool.me
fool.you

Gnutella

Application Layer 2-37

IPY:fool.me
fool.you

Gnutella: strengths and weaknesses

 pros:

flexibility in query processing

complete decentralization

simplicity

fault tolerance/self-organization

 cons:

severe scalability problems

susceptible to attacks

 Pure P2P system

Application Layer 2-38

Gnutella: initial problems and fixes

 2000: avg size of reachable network only 400-800 hosts.
Why so small?
 modem users: not enough bandwidth to provide search routing

capabilities: routing black holes

 Fix: create peer hierarchy based on capabilities
 previously: all peers identical, most modem black holes

 preferential connection:

• favors routing to well-connected peers

• favors reply to clients that themselves serve large number
of files: prevent freeloading

Application Layer 2-39

Decentralized and Unstructured

P2P
 Hierarchical overlay with super peers
 Flooding is apparently not scalable

 FastTrack adopts a hierarchical overlay

 A super peer acts as a local directory database which
stores the indexes of objects shared by ordinary peers

 Two-level hierarchical overlay

• The lower level adopts the central

server approach

• The upper level (super peers) adopts the

decentralized and unstructured approach.

Application Layer 40

query reply

Hierarchical Overlay

 between centralized index,
query flooding approaches

 each peer is either a super
node or assigned to a super
node
 TCP connection between peer

and its super node.

 TCP connections between some
pairs of super nodes.

 Super node tracks content in
its children

Application Layer 2-41

ordinary peer

group-leader peer

neighoring relationships

in overlay network

Kazaa (Fasttrack network)

 Hybrid of centralized Napster and decentralized Gnutella
 hybrid P2P system

 Super-peers act as local search hubs
 Each super-peer is similar to a Napster server for a small portion

of the network

 Super-peers are automatically chosen by the system based on
their capacities (storage, bandwidth, etc.) and availability
(connection time)

 Users upload their list of files to a super-peer

 Super-peers periodically exchange file lists

 You send queries to a super-peer for files of interest

Application Layer 2-42

Unstructured vs Structured P2P

 The systems we described do not offer any
guarantees about their performance (or even
correctness)

 Structured P2P

 Scalable guarantees on numbers of hops to answer a query

 Maintain all other P2P properties (load balance, self-
organization, dynamic nature)

 Approach: Distributed Hash Tables (DHT)

Application Layer 2-43

Decentralized but Structured

 Combine the distributed directory service with
an efficient query routing scheme

 Key ideas
 Distributed directory service

• Hash function maps peers and objects into
the same address space

 Efficient query routing

• Peers are organized into a structured
overlay based on their positions in the
address space

Application Layer 44

Distributed Hash Table (DHT)

 DHT: a distributed P2P database

 database has (key, value) pairs; examples:
 key: ss number; value: human name

 key: movie title; value: IP address

 Distribute the (key, value) pairs over the
(millions of peers)

 a peer queries DHT with key
 DHT returns values that match the key

 peers can also insert (key, value) pairs

Application Layer 2-45

 Distributed version of a hash table data structure

 Stores (key, value) pairs
 The key is like a filename

 The value can be file contents, or pointer to location

 Goal: Efficiently insert/lookup/delete (key, value) pairs

 Each peer stores a subset of (key, value) pairs in the
system

 Core operation: Find node responsible for a key
 Map key to node

 Efficiently route insert/lookup/delete request to this node

 Allow for frequent node arrivals/departures

Application Layer 2-46

Distributed Hash Table (DHT)

DHT Desirable Properties

 Keys should mapped evenly to all nodes in the
network (load balance)

 Each node should maintain information about
only a few other nodes (scalability, low update
cost)

 Messages should be routed to a node efficiently
(small number of hops)

 Node arrival/departures should only affect a few
nodes

Application Layer 2-47

Basic Approach

In all approaches:

 keys are associated with globally unique IDs
 integers of size m (for large m)

 key ID space (search space) is uniformly populated -
mapping of keys to IDs using (consistent) hashing

 a node is responsible for indexing all the keys in a certain
subspace (zone) of the ID space

 nodes have only partial knowledge of other node’s
responsibilities

Application Layer 2-48

Decentralized but Structured

 Operations overview
 Each peer generates its ID by a hash function

 Each peer generates IDs of objects to be shared by the
same or another hash function

 For each object, the peer sends a register message to
the node that has the node ID same as the object’s ID.

 To query an object, a peer uses the hash function to
generate the object ID and sends the query message to
the node that hosts the object’s ID.

Application Layer 49

Q: how to assign keys to peers?

 central issue:
 assigning (key, value) pairs to peers.

 basic idea:
 convert each key to an integer

 Assign integer to each peer

 put (key,value) pair in the peer that is closest
to the key

Application Layer 2-50

DHT identifiers

 assign integer identifier to each peer in range
[0,2n-1] for some n.
 each identifier represented by n bits.

 require each key to be an integer in same range

 to get integer key, hash original key
 e.g., key = hash(“Led Zeppelin IV”)

 this is why its is referred to as a distributed “hash”
table

Application Layer 2-51

Assign keys to peers

 rule: assign key to the peer that has the
closest ID.

 convention in lecture: closest is the
immediate successor of the key.

 e.g., n=4; peers: 1,3,4,5,8,10,12,14;
 key = 13, then successor peer = 14

 key = 15, then successor peer = 1

Application Layer 2-52

1

3

4

5

8
10

12

15

Circular DHT (1)

 each peer only aware of immediate successor and
predecessor.

 “overlay network”

Application Layer 2-53

0001

0011

0100

0101

1000
1010

1100

1111

Who’s responsible

for key 1110 ?
I am

O(N) messages

on avgerage to resolve

query, when there

are N peers

1110

1110

1110

1110

1110

1110

Define closest

as closest

successor

Application 2-54

Circular DHT (1)

Application Layer 2-54

Circular DHT with shortcuts

 each peer keeps track of IP addresses of predecessor,
successor, short cuts.

 reduced from 6 to 2 messages.

 possible to design shortcuts so O(log N) neighbors, O(log N)
messages in query

Application Layer 2-55

1

3

4

5

8
10

12

15

Who’s responsible

for key 1110?

Peer churn

example: peer 5 abruptly leaves

peer 4 detects peer 5 departure; makes 8 its immediate
successor; asks 8 who its immediate successor is; makes
8’s immediate successor its second successor.

what if peer 13 wants to join?

Application Layer 2-56

1

3

4

5

8
10

12

15

handling peer churn:

peers may come and go (churn)

each peer knows address of its
two successors

each peer periodically pings its
two successors to check aliveness

if immediate successor leaves,
choose next successor as new
immediate successor

Object Distribution

Application Layer 57

Consistent hashing

[Karger et al. ‘97]

128 bit circular id space

nodeIds (uniform random)

objIds (uniform random)

Invariant: node with

numerically closest nodeId

maintains object

objid

nodeids

02128 - 1

Object Insertion/Lookup

Application Layer 58

X

Route(X)

Msg with key X

is routed to live

node with

nodeId closest

to X

Problem:

complete

routing table

not feasible

O2128 - 1

Routing

Integrity of overlay:

 guaranteed unless L/2 simultaneous failures of
nodes with adjacent nodeIds

Number of routing hops:

 No failures: < log16 N expected, 128/b + 1 max

 During failure recovery:
 O(N) worst case, average case much better

Application Layer 59

Routing Procedure

Application Layer 60

if (destination is within range of our leaf set)

forward to numerically closest member

else

let l = length of shared prefix

let d = value of l-th digit in D’s address

if (Rl
d exists)

forward to Rl
d

else

forward to a known node that

(a) shares at least as long a prefix

(b) is numerically closer than this node

Routing

Properties
 log16 N steps
 O(log N) state

Application Layer 61

d46a1c

locate(d46a1c)

d462ba

d4213f

d13da3

65a1fc

d467c4

d471f1

DHT Routing Protocols

 DHT is a generic interface

 There are several implementations of this interface

 Chord [MIT]

 Pastry [Microsoft Research UK, Rice University]

 Tapestry [UC Berkeley]

 Content Addressable Network (CAN) [UC Berkeley]

 SkipNet [Microsoft Research US, Univ. of Washington]

 Kademlia [New York University]

 Viceroy [Israel, UC Berkeley]

 P-Grid [EPFL Switzerland]

 Freenet [Ian Clarke]

Application Layer 2-62

Decentralized but Structured

 Message routing (use Chord as an example)
 Key idea: have each peer maintain a specially designed

routing table such that every peer could forward the
arriving message to a neighboring peer with node ID that
is further closer to the destination.

 Consider a 10-node Chord overlay in a 6-bit address
space

 Chord views its address space as a one-dimensional
circular space such that peers in the space form a ring
overlay.

Application Layer 63

Message Routing in Chord

 The routing table in Chord is called a finger table.

 For an m-bit address space, the finger table of a
node with ID=x consists of at most m entries and
the i-th entry points to the first node with ID
following the ID of x+2i-1 modulo 2m, for 1≤i≤m.

Application Layer 64

Finger Table of Chord
 Finger table of node N8, where m =6.

Application Layer 65

N8

N15

N20

N30
N38

N42

N47

N51

N56 +1

+2

+4

+8

+16+32

Finger table

N8+1 N15

N8+2 N15

N8+4 N15

N8+8 N20

N8+16 N30

N8+32 N42

N1

Routing a Query Message
 Routing a query message for object 54 from N8

Application Layer 66

N1

N8

N15

N20

N30
N38

N42

N47

N51

N56

Finger table

N8+1 N15

N8+2 N15

N8+4 N15

N8+8 N20

N8+16 N30

N8+32 N42

Finger table

N42+1 N47

N42+2 N47

N42+4 N47

N42+8 N51

N42+16 N1

N42+32 N15

Finger table

N51+1 N56

N51+2 N56

N51+4 N56

N51+8 N1

N51+16 N8

N51+32 N20

K54

lookup(54)

Leaf Sets

Application Layer 2-67

Each node maintains IP addresses of the

nodes with the L numerically closest larger

and smaller nodeIds, respectively.

• routing efficiency/robustness

• fault detection (keep-alive)

• application-specific local coordination

Node Addition

Application Layer 68

d46a1c d462ba

d4213f

d13da3

65a1fc

d467c4

d471f1

addnode(d46a1c)

Node Departure (Failure)

Leaf set members exchange keep-alive
messages

 Leaf set repair (eager): request set from
farthest live node in set

 Routing table repair (lazy): get table from
peers in the same row, then higher rows

Application Layer 69

Application Layer 76

Performance Issues of P2P

Applications
 Free Riding

 Flash Crowd

 Topology Awareness

 NAT Traversal

 Churn

 Security

 Copyright Infringement

Free Riding
 Scalability of P2P systems relies on the contribution

from peers
 free rider: a peer only consumes but contributes little or

no resources

 85% of peers share no files in Gnutella in 2005

 A common solution is to implement some incentive
mechanisms.
 tit-for-tat in BitTorrent.

 reward-based

 credit-based

Application Layer 77

Flash Crowd

 Definition: a sudden, unanticipated growth in the
demand of a particular object
 e.g., a new release of a DVD video or mp3 file

 Issues
 A sudden large amount of query messages

 To find and download the object within a short time
period

 Solutions
 Cache, duplicating popular objects

Application Layer 78

Topology Awareness

 A virtual link could be
 a long end-to-end connection across continents

 a short one within a local area network

 How to avoid serious topology mismatch

 Solutions
 Route-proximity or Neighbor-proximity

 Routing or neighbor selection based on RTT
measurement, preference of routing domain or ISP, or
geographical information.

Application Layer 79

NAT Traversal

 Basic requirement for P2P systems

 If both peers are behind NAT devices, they
cannot connect to each other without help
from other peers or STUN servers

 Solutions

 In most cases, NAT traversal is solved by relay
peers or super peers that have public IP
addresses

Application Layer 80

Churn

 Churn refers to the phenomenon that peers
dynamically join and leave the system at will.
 high churn rate seriously affects the stability and scalability

of a P2P system.

 e.g., a high churn rate may cause a tremendous overlay
maintenance overhead and dramatic routing performance
degradation in DHT-based system

 Solutions
 Avoid rigid structure or relation among peers

 Peers maintain a list of potential neighbors for quick and
dynamic neighbor replacement

Application Layer 81

Security

 Issues
 P2P programs with back hole (Trojan Horse), spurious

content, leaking of files not to be shared.

 Solutions to content pollution
 Protect the content with message digest such as MD5

• In BitTorrent, the MD5 digest of each piece of a shared
file is stored in the metadata file

 Peer reputation system

 Object reputation system

Application Layer 82

Copyright Infringement

 Sharing copyrighted objects through P2P systems
is a serious problem which hinders the promotion
and usage of P2P systems.

 Not only P2P users are responsible for copyright
infringement, so are the companies that host P2P
applications
 Especially in the case where P2P systems will not be

able to exist without their servers (e.g., Napster)

Application Layer 83

P2P file distribution: BitTorrent

Application Layer 2-84

tracker: tracks peers
participating in torrent

torrent: group of
peers exchanging
chunks of a file

obtain list

of peers

trading
chunks

peer

 BitTorrent (BT) was originally designed by Bram Cohen in 2001

 file divided into 256KB chunks.

 peer joining torrent:

 has no chunks, but will
accumulate them over time
from other peers

 registers with tracker to get
list of peers, connects to
subset of peers
(“neighbors”)

Application Layer 2-85

P2P file distribution: BitTorrent

 while downloading, peer uploads chunks to other peers

 peer may change peers with whom it exchanges chunks

 churn: peers may come and go

 once peer has entire file, it may (selfishly) leave or
(altruistically) remain in torrent

BitTorrent: requesting, sending file chunks

requesting chunks:
 at any given time, different

peers have different subsets
of file chunks

 periodically, Alice asks each
peer for list of chunks that
they have

 Alice requests missing
chunks from peers, rarest
first

Application Layer 2-86

sending chunks: tit-for-tat
 Alice sends chunks to those

four peers currently sending her
chunks at highest rate
 other peers are choked by Alice

(do not receive chunks from her)

 re-evaluate top 4 every10 secs

 every 30 secs: randomly select
another peer, starts sending
chunks
 “optimistically unchoke” this peer

 newly chosen peer may join top 4

BitTorrent: tit-for-tat

Application Layer 2-87

(1) Alice “optimistically unchokes” Bob

(2) Alice becomes one of Bob’s top-four providers; Bob reciprocates

(3) Bob becomes one of Alice’s top-four providers

higher upload rate: find better

trading partners, get file faster !

BT Operation Overview

Application Layer 88

Web page with Link

to .torrent

Web Server

Tracker

Seeder

Source

publish

Downloading peer

Downloading peer

1. get .torrent
2. get

announce

3. response peer

list

4. get piece

5. get piece

BT Architecture

 Hybrid
 Centralized: tracker plays the role of local central

directory server for a file

 Decentralized: peer discovers which piece to
download from which peer/seeder in a distributed
manner

 New development: distributed tracker based on DHT
(no centralized tracker)

Application Layer 89

Piece Selection

 Random first piece selection
 For the first few pieces, the client just randomly selects a

piece to download.

 Rarest first policy
 Selects the most scarce piece to download first

 End-game mode
 To speed up the completion of a file download at the end,

a peer with only a few pieces missing will send requests
for all missing pieces to all the peers

Application Layer 90

Peer Selection
 Choking/unchoking

 Choking refers to a temporal refusal to upload to a peer.

 At the beginning, all peers are chocked

 Tit-for-tat algorithm selects a fixed number of peers from which the
peer downloaded most to unchoke

 Optimistic unchoking
 new peer needs to move its first step when initially joined the system

 select one peer at random

 Anti-snubbing
 If a peer is choked by all of its peers (snubbed), it is better to run

optimistic unchoking more often to explore more peers that are willing
to cooperate.

Application Layer 91

