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ABSTRACT

This work proposes to use a small prediction table along with a profiling table to determine the
impact of each predictor entry on the performance, and evaluates the idea using a simple stride
predictor. Initial results indicate that adding a profiler to a small value predictor can reduce 17%
of all stalls on average. More importantly, the results show that our mechanism can approximate
the performance of the 128-entry fully associative predictor with just 20% of its size.
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1 Introduction

Current superscalar general purpose processors invest in all kinds of ways to predict data
in order to exploit ILP. For example, value predictors and branch predictors keep the his-
tory of previous instructions in order to correctly predict the data or outcome of upcoming
instructions. Unfortunately, these structures are very large and complex most of the time.

Although these structures are big, only a subset of the entries in these structures is ef-
fectively useful because of non-regular data or very rarely used entries. We also observed
that it is difficult to reduce the number of entries of these structures without degrading its
prediction accuracy because smaller structures will cause useful entries to be evicted early.

Embedded processors are unable afford such big and power hungry predictor structures.
A cost efficient method is needed to select the best subset of instructions that will update a
small predictor effiently. In other words, a new replacement policy must be considered that
will also take into account the performance gain of a hit in order to select the best possible
subset of instructions for updating.

Therefore, we propose a novel technique that exploits small structures using a profiling
table having a number of entries on the same order of existing structures but with less infor-
mation to determine the impact of each entry on the performance. Knowing the importance
of such entries allows the predictor to be updated with the best possible subset of entries.

Our technique potentially targets any microarchitecture structure that uses replacement
policies to improve performance. Example of such structures are caches, branch predictors
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and value predictors. In this work, we use a value predictor to illustrate our approach.

2 Related Work

Prior work mainly proposes replacement policies that decide which entry in the predictor
table will be replaced or if an entry will be replaced based on its performance using event
counters [KS05, KSD04] or hysteresis counters. Event counters keep track of the performance
of each entry based on different events like miss or hit. Hysteresis counters provide delay of
the replacement of an entry to avoid premature replacement.

Furthermore, there are various techniques [RMR07, CRT99] to filter the instructions that
update the predictors. Such filtering reduces the pressure due to replacements and improves
the prediction rate. Also confidence history is used in order to avoid replacing entries that
deliver good predictions by other that have poor performance. Still, their method relies on
having relatively big structures to achieve accurate predictions.

Using a very small structure of 8 entries for example, it will be very difficult for the
hysteresis counters to work since there will not be enough time to get hits and increase the
counters. We propose the use of a small predictor with a dynamic profiler. The profiler will
have a number of entries on the same order of existing big structures but the size of each
entry will be much smaller. The profiler will provide the decisions for replacement based
on hashed information and also can achieve the filtering and confidence of unpredictable
instructions by keeping track of the performance of each instruction using the profiler.

3 Profiling based replacement policy

We will use a simple Stride Value Predictor [EV93] as our baseline predictor to demonstrate
the idea. A Stride Value Predictor is accessed with the PC of a load instruction at the decode
stage. If there is a tag match then the destination register of the instruction is speculatively
updated and the prediction is checked for correctness on the writeback stage. If the loaded
value matches the prediction then the value predictor is updated with the new value and
stride. If the loaded value does not match the prediction then the predictor is updated and
also the pipeline is flushed and instructions, after the mispredicted load, are re-executed
with the correct value. If there is a tag miss in the value predictor during the decode stage, a
new entry will be inserted in the value predictor on the writeback stage.

Studying the behavior of load instructions and big value predictors, we discovered that
usually a smaller percentage of those instructions are predictable and even a much smaller
percentage of those instructions needs to be in the predictor at the same time at any given
period of time. Trying to use a very small value predictor, of 8 entries for example, was very
difficult for the techniques mentioned before to work since there was not enough time to
train the counters that those policies are based on because of the continuous replacements.

The previous observation raises the need for a cheap way to know the performance of
the instructions trying to update the value predictor without keeping those instructions in
the small 8-entry table that provides the predictions. In order to achieve this, we propose
the use of a dynamic profile table with hashed information in combination with the small
8-entry fully associative value predictor. The profile table will provide all the information
needed to decide which and when an entry will be inserted in the value predictor.

Figure 1 shows the proposed Profile Table along with its associated 8-entry predictor. The
fields of the profiler are as follow: a) the hashed value, which is the last 3 bits of the loaded
value, b) the hashed stride, which is the last 3-bits of the delta of the last and previous hashed
value, c) the counter, which is a 3-bit counter indicating the performance of the entry, and d)
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Figure 1: 128-entry direct mapped profiler with an 8-entry fully associative value predictor

the context, which is a unique number assigned heuristically to all loads that belong to the
same contexts (4 bit value that becomes zero when it saturates to 16).

The use of hashed values along with the counter allows the profiler to approximately
but very accurately calculate how much an entry will contribute to the performance. For
example, each time a load instruction reaches the writeback stage it updates the profiler. The
hashed value plus the hashed stride are compared with the hash of the loaded value and if
they are equal then the counter is updated with the number of stalls that the load caused.
Otherwise, if the hashed information does not match then the counter is decremented.

In order to detect and assign the context for an instruction we use a simple heuristic
algorithm that detects loops during the execution and assigns a unique context number to
all the loads that belong to this loop.

Once an entry has to be replaced in the value predictor the following steps are performed:
1. Access the value predictor and find a candidate entry for replacement

(a) If one or more entries in the value predictor do not belong to the current context,
then one of these entries will be selected

(b) Else if all the entries in the value predictor belong to the current context then the
entry with the minimum counter value will be selected

2. Compare the counter and context of the candidate entry for replacement with the
counter and context of the new load instruction

(a) If the candidate entry belongs to a different context than the current context, or
belongs to the current context but has smaller counter value than the new entry,
then replace the entry with the new one

(b) Else if the candidate entry for replacement belongs to the current context and has
also bigger counter value than the new load instruction then do nothing

4 Results and Future work

In this section we show that our profiler with a small 8-entry value predictor can approxi-
mate a bigger 128-entry value predictor.

We used a 5 stage pipeline model of an ARM core to collect information on the trace and
detect potential removal of stalls cause by load dependancies. On every stall cycle we access
the value predictor and in case of a correct prediction we can eliminate that stall. Figure 2



0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
h

is
to

g
ra

m
_

b
it

fB
it
A

lS
te

p it
i

e
s
ti
m

a
ti
o

n
p

n
tr

c
h

0
1

u
c
b

q
s
o

rt
a

if
ft

r0
1

m
a

n
d

e
ld

id
c
tr

n
0

1
g

7
2

1
lif

e
_

b
it

s
e

a
p

ro
b

e
p

e
rs

p
tr

is
_

f3
2

tt
s
p

rk
0

1
a

ff
in

e
tr

is
_

f3
2

tb
lo

o
k
0

1
fo

u
ri
e

r
a

iif
ft

0
1

a
ff
in

e
tr

is
_

fi
x

n
in

te
n

d
o

_
q

s
o

rt
ro

u
te

lo
o

k
u

p
v
2

m
e

s
a

_
o

s
d

e
m

o
ro

u
te

lo
o

k
u

p
o

s
p

f
m

a
tt

s
td

g
3

fa
x

lu
d

C
o

n
v
E

n
2

a
s
s
ig

n
b

z
2

te
s
t

b
m

s
h

u
ff
m

a
n

n
s
e

rv
o

te
s
t

o
s
p

fv
2

m
p

e
g

c
o

rr
_

b
it

V
it
e

rb
Z

e
ro

s
tc

p
b

u
lk

te
x
t0

1
V

it
e

rb
G

e
t

V
it
e

rb
T
o

g
g

le
V

it
e

rb
O

n
e

s
iir

fl
t0

1
ro

ta
te

0
1

C
o

n
v
E

n
1

d
h

ry
le

g
a

l_
3

0
it
e

r
d

h
ry

le
g

a
l_

2
0

it
e

r
C

o
n

v
E

n
3

tc
p

m
ix

e
d

b
lo

w
fi
s
h

v
v
4

2
v
it
e

rb
i

d
h

ry
a

n
s
i_

n
o

n
_

o
p

ti
d

h
ry

a
n

s
i_

o
p

ti
m

iz
e

d
d

h
ry

a
n

s
i_

3
0

it
e

r
d

h
ry

a
n

s
i_

2
0

it
e

r
g

s
m

_
to

a
s
t

g
s
m

_
u

n
to

a
s
t

c
4

m
a

z
e

a
2

ti
m

e
0

1
a

if
ir
f0

1
c
a

n
rd

r0
1

d
e

s
3

g
e

o
m

e
tr

y
_

fi
x

ip
_

p
k
tc

h
e

c
k
b

1
m

ip
_

p
k
tc

h
e

c
k
b

2
m

ip
_

p
k
tc

h
e

c
k
b

4
m

ip
_

p
k
tc

h
e

c
k
b

5
1

2
k

p
e

rs
p

tr
is

_
fi
x

p
k
tf

lo
w

1
0

2
4

p
k
tf

lo
w

2
0

4
8

p
k
tf

lo
w

4
0

9
6

p
k
tf

lo
w

5
1

2
p

u
w

m
o

d
0

1
rc

5
rs

p
e

e
d

0
1

P
e

rc
e

n
ta

g
e

 o
f 

S
ta

ll
s

 r
e

m
o

v
e

d

8 entries Profiler 128 128 entries + 3bit

1.6KB vs 0.33 KB

size = 0.33 KB size = 1.6KB

Figure 2: Results for a 128-entry profiler table with an 8-entry value predictor

shows the results using the percentage of stalls successfully removed, correctly predicted,
from all the stalls caused during execution. The line "8 entries" correspond to an 8-entry
fully associative value predictor using LRU, the line "128 entries + 3bit" corresponds to an
128-entry fully associative value predictor using LRU plus a 3-bit counter for each entry to
provide hysteresis during replacement. A hysteris counter is set to maximum value when
we have a correct prediction and is decremented on a misprediction. An entry cannot be
replaced if the counter is not zero. Finally the "Profiler 128" corresponds to an 8-entry value
predictor with the proposed dynamic profiler with 128 entries. The size of this is 0.33KB
while the size of the 128-entry predictor is 1.6KB. The results indicate that the potential
performance improvement is significant when compared to the LRU policy (17% more stalls
removed). Also the results show that the mechanism can approximate the performance of
the 128-entry fully associative predictor with just 20% of its size.

For future work, an optimal replacement analysis will be performed to measure the prox-
imity of the profiler based policy to the optimal. We also want to investigate in more detail
the effect of our profiler in performance and other structures like branch predictors and
caches.
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