

- wear-out grows faster than area scaling
- More protection leads to extra area and energy consumption
- Stronger ECC codes, Increase spares, Larger
- Need cost effective solutions for SRAM reliability

CBFD: Counter Based Fault Detection Method

- Use a counter to track number of 1s in an array
- Counter size: log2(NB)+1, N is # of entries, B is bits/entry lacksquare

CBFD: Overheads & Fault Detection Latency

- Overheads
 - Area for Counter(s)
- At initialization number of 1s in the array stored in the counter
- Maintain Read-Write Invariance

- Energy of updating counters
- Performance/Energy implication of Read2Counts
- Fault Detection Latency: Use Sweeping to bound Latency

Conclusions & Future Work

- Keep track of the number of 1s in the array of size N by a counter
- Low cost+ reasonable coverage symptom detector
- Combine with check-pointing to provide recovery
- Sweeping may be not needed for prediction arrays
- CBFD Error Detection: Soft & Hard Errors, Cells and Peripheral Logic
- For low-cost error detection: stand-alone

• CBFD + Partitioning + Sweeping

- For high coverage: combination with Parity and ECC
- Power savings: Prevent precharging bitlines that all their cells store the

same value		Byte Pa Coverage	rity Cost	CB Coverage	FD Cost
	within a word	Odd	n/8	Odd+Even Unbal.	log ₂ (n)+1
	bursts of d bits	interleaving	n/8	interleaving+ partitioning	d(log ₂ (n/d)+1)
	random across words	High	n/8	needs partitions	$P(\log_2(n/P)+1)$

CBFD: Comparison to Parity

of size 1+log2(N) bits

- Relies on Read-Write Invariance
- CBFD + Sweeping + Checkpointing: low cost detection and recovery
- Applications: Testing, Power savings, Reliability
- Future directions
 - 2D CBFD
 - Detailed Evaluation
 - Byte parity and ECC checks only on writes + Sweeping + Checkpointing (LBFD: Lazy Based Fault Detection)
- Acknowledgments: European Commission FP7 project "Energyconscious 3D Server-on-Chip for Green Cloud Services ("EuroCloud")"