
ATMI : Analytical Model of Temperature in Microprocessors

Pierre Michaud Yiannakis Sazeides
IRISA/INRIA University of Cyprus

Rennes, France Nicosia, Cyprus

pmichaud@irisa.fr yanos@cs.ucy.ac.cy

Members of HiPEAC

Abstract

As microprocessors become increasingly thermally con-
strained, microarchitecture and operating-system research
will require temperature models that are reliable, fast, and
easy to use. This goal is difficult to achieve with general-
purpose tools like those based on finite elements. We have
developed a computationally efficient temperature model,
called ATMI, using analytical methods. ATMI is specialized
and is based on some idealizations of the microprocessor
chip and its packaging. The computation speed and ease
of use of ATMI make it appropriate for research. This pa-
per presents the ATMI model, gives an overview of its soft-
ware implementation, and provides some example applica-
tions.

1. Introduction
The relentless increase of power density has made tem-

perature an important constraint in the design of high per-
formance microprocessors. Packaging has long been con-
cerned with temperature issues, but packaging alone is
no longer sufficient. Now temperature issues concern cir-
cuit designers, microarchitects, and operating-system devel-
opers. Consequently, researchers need reliable models for
studying temperature-related problems. We propose ATMI,
a model of temperature in microprocessors. Compared to
general-purpose tools, ATMI is computationally efficient
and easy to use. These advantages were obtained by sacri-
ficing generality and by idealizing the microprocessor chip
and its packaging.

Accurate temperature modeling requires to solve a
boundary-value problem. First, the physical system is mod-
eled (object geometry, material properties, boundary
conditions,...), then the heat equation is solved with math-
ematical means. There are different methods for solv-
ing the heat equation. Ideally, one would like a method that
is general, reliable, fast, and easy to use. To our knowl-
edge, no existing method has all these qualities. The most

widely used methods for solving the heat equation are fi-
nite difference (FDM) and finite element methods (FEM).
These methods permit modeling arbitrarily detailed phys-
ical systems. However, using FDM or FEM for model-
ing microprocessor temperature requires a large number
of nodes [7]. This means a long computation time, espe-
cially when modeling time-varying temperature.

The oldest method for solving the heat equation is the
analytical method [9, 4]. Unlike other methods, analytical
methods provide explicit solutions, generally in the form
of an infinite sum or an integral, which can be evaluated
quickly and accurately on modern computers. However,
analytical methods are not as general as FDM and FEM
since they require more idealization of the physical system.
Nonetheless, when applicable, analytical methods are reli-
able and computationally efficient. We believe that analyt-
ical methods are appropriate for researchers that have in-
terest in temperature issues in microprocessors. Our argu-
ments in favor of analytical methods are as follows :

• In microarchitecture and operating-system (OS) re-
search related to thermal issues in microprocessors,
the greatest source of inaccuracy does not come from
physical idealization, but from not knowing parame-
ters value (e.g., heat sink thermal resistance, interface
material thickness and thermal conductivity, ...). This
does not necessarily mean that the qualitative conclu-
sions are wrong (if an idea were dependent on precise
parameters values, this idea would probably have lit-
tle applicability). Having a model with few but impor-
tant parameters makes sense, but it is essential that the
model be consistent with physics when we vary pa-
rameters values. This goal is compatible with analyti-
cal methods.

• For microarchitecture and OS research, computation
speed is very important. Analytical methods are gener-
ally very fast compared with FEM and FDM.

• Limit studies are useful when trying to gain some un-
derstanding (e.g., what if the heat source is very small?

conductance h2 (W/m K)2

2conductance h1 (W/m K)

Tamb
z= z2

heat flux q(x,y,t) (W/m)
2

conductivity k2 (W/mK)

conductivity k1 (W/mK)
z= z1

z= 0
x=−L/2 x=+L/2

Figure 1: ATMI model : two layers of different mate-
rials. Heat transfer between the two layers is mod-
eled by a conductance h1. Heat transfer from layer
2 to the ambient medium is modeled by a con-
ductance h2. Heat generation is modeled as a pre-
scribed heat flux on the plane z = 0.

what if the heat sink is very large ? ...). Analytical
methods do not rely on space discretization and make
limit studies very easy.

The rest of the paper is organized as follows. Section
2 presents the ATMI physical model. Section 3 gives an
overview of the implementation of the ATMI software. Sec-
tion 4 provides some applications of ATMI. Finally, Section
5 concludes the paper.

2. The ATMI physical model
Figure 1 depicts the ATMI physical model. It consists

of two layers of different material. Each layer is parallel to
the “horizontal”(x, y) plane and perpendicular to thez di-
rection. Layer 1 corresponds toz ∈ [0, z1] and represents
the silicon die, with thermal conductivityk1. Layer 2 cor-
responds toz ∈ [z1, z2] and represents the heat spreader
and/or the heat sink base plate, with thermal conductivity
k2. The material used for layer 2 (for instance, copper) gen-
erally has a high thermal conductivity for good heat spread-
ing. The two layers have the same horizontal dimensions :
each layer is a square of side lengthL, whereL is the heat-
sink width. Hence one of ATMI limitations is that it does
not model chip edges.1 The power dissipated in transistors
and wires is modeled by a prescribed heat fluxq(x, y, t) de-
pending on timet and representing the 2D power density in
the planez = 0.

Conductanceh1, in W/m2K, represents the interface
material. In the ATMI physical model, the interface is con-
sidered infinitely thin. This physical idealization provides
a good approximation of the actual behavior [21]. If one
knows the interface thicknessdi and thermal conductivity
ki, the corresponding conductance is

1 Neverthless, the ATMI manual [1] describes a rule of thumb,based on
the method of images, for estimating the impact of the silicon layer
width being less thanL.

locus boundary condition

z = 0 −k1
∂T1

∂z
= q(x, y, t)

z = z1 −k1
∂T1

∂z
= −k2

∂T2

∂z

= h1(T1 − T2)

z = z2 −k2
∂T2

∂z
= h2(T2 − Tamb)

x = ±L/2 ∂T1

∂x
= ∂T2

∂x
= 0

y = ±L/2 ∂T1

∂y
= ∂T2

∂y
= 0

t = 0 T1 = T2 = Tamb

Table 1: ATMI boundary conditions.

h1 =
ki

di

(1)

Conductanceh2 is an effective heat transfer coefficient
[10, 23]. For example, for a conventional heat-sink of ther-
mal resistanceRhs (K/W) and widthL, the equivalent heat
transfer coefficient is

h2 =
1

RhsL2
(2)

In each layer, we assume material characteristics that are
uniform and independent of temperature. In reality, silicon
characteristics are dependent on temperature. To linearize
the problem and make the analytical approach tractable, ma-
terial characteristics should be set according to the temper-
ature rangea priori. After linearization, the heat equation
can be written

∇2Ti =
1

αi

∂Ti

∂t

for i ∈ {1, 2} and with the boundary conditions listed in Ta-
ble 1. In particular, temperatureTamb of the medium on top
of layer 2 is assumed uniform and constant.T1 andT2 are
temperatures in layers 1 and 2 respectively, andα1 andα2

are thermal diffusivities inm2/s.
We obtained an explicit analytical solution for a point

source using classical methods [4]. The detailed derivation
of the solution is provided in [19]. The mathematical ex-
pression gives temperature on the planez = 0 as a func-
tion of the distance from the point source and as a function
of time (a power-step is applied to the point source).

Because the ATMI model is linear, the temperature for
any power densityq(x, y, t) can be obtained from the point-
source solution by superposition. More precisely, we define
the temperature relative toTamb (or relative temperaturefor
short)

u = T − Tamb

The principle of superposition can be stated as follows. Let
u1(x, y, t) be the temperature on the planez = 0 generated

by any power densityq1(x, y, t) andu2(x, y, t) the temper-
ature generated by any power densityq2(x, y, t). The tem-
perature generated by power density

q(x, y, t) = β1q1(x, y, t) + β2q2(x, y, t)

is

u(x, y, t) = β1u1(x, y, t) + β2u2(x, y, t) (3)

whereβ1 andβ2 are any fixed factors. The principle of su-
perposition is intuitive and powerful. It is the basis of ATMI.

2.1. Spatial and time convolutions

Essential for a microprocessor temperature model is the
measurement of the effects of the different temperature
sources on a chip over time. This can be computed using
space and time convolutions as described below. We define
H(t) as

H(t) =

{

0 t < 0
1 t ≥ 0

and we defineup(x, y, t) as the temperature generated on
the planez = 0 when a point source located at(0, 0, 0)
dissipates a powerH(t) (watts) and assumingL = ∞.
The temperatureuH(x, y, t) generated by any power den-
sity q(x, y) × H(t) is

uH(x′, y′, t) =

∫∫

q(x, y)up(x
′−x, y′−y, t)dxdy (4)

If we consider any functionp(t), the temperature
u(x′, y′, t′) generated by any power densityq(x, y) × p(t)
is

u(x′, y′, t′) =

∫ t′

0

p(t)
∂uH

∂t
(x′, y′, t′ − t)dt (5)

which is known as Duhamel’s theorem. Both (4) and (5)
stem directly from the principle of superposition (3).

2.2. Method of images

Formula (4) is valid forL = ∞. The impact of the fi-
nite heat sink widthL can be modeled by the method of
images [4, 15]. The sides of the base plate are located at
x = ±L/2 andy = ±L/2. Heat escaping by convection
through the sides of the base plate is negligible compared
with that escaping through the top. Hence we can assume
insulated walls atx = ±L/2 andy = ±L/2. The effect
of insulated walls can be simulated rigorously by adding
the temperature contributions of an infinite number of im-
age copies of the power source, as illustrated on Figure 2.
The principle is to create a symmetry that forces the heat
flux in the planesx = ±L/2 andy = ±L/2 to be parallel
to these planes. In practice, because the heat-sink is wider

L

Figure 2: Method of images : an infinite number
of image copies of a power source in the plane
z = 0 simulate insulated walls at x = ±L/2 and
y = ±L/2.

than the chip and the chip is mounted at the center of the
heat-sink base plate, it is accurate and computationally effi-
cient to model each image as a point source (temperature a
few centimeters away from a source is practically indepen-
dent from the source geometry and very close to that of a
point source).

3. ATMI software implementation
The model described in Section 2 could be generalized

to an arbitrary number of layers and various boundary con-
ditions [4, 13, 6, 17]. Such model could be used for ap-
plications other than microprocessor temperature. However,
by specializing the model, we could tailor the model to our
needs and obtain computation speed and ease of use.

The model of Section 2 is already specialized as it con-
siders a fixed number of layers, fixed boundary conditions
(apart fromq(x, y, t)), and considers temperature only on
the planez = 0. Moreover, assuming that power sources are
located close to the center of the base-plate, as explained in
Section 2.2, facilitated the implementation of the method of
images.

3.1. Accelerating time-convolutions

Computing spatial convolution (4) and time convolution
(5) may require a lot of time. Thus our model requires ad-
ditional specialization. Fast Fourier Transform (FFT) could
be used to speed up convolutions. The ATMI software pro-
vides a FFT-based spatial convolution for steady-state tem-
perature. However, for transient temperature, we used a dif-
ferent method. Instead of considering arbitrarily detailed
power density maps, we assumed a microprocessor power
density map could be modeled with a moderate number of
rectangle power sources.

As for time convolution, it was not possible to use the
FFT in the general case. The FFT can speed up convolutions

provided power density as a function of time is known a pri-
ori. In particular, power density should not depend on tem-
perature. However, there are two reasons why this is not the
case. First, modern microprocessors feature on-chip ther-
mal sensors that trigger thermal throttling when the tem-
perature limit is exceeded, and thermal throttling changes
power density. Second, static power consumption is a func-
tion of temperature.

Consequently, we used a different method to speed up
convolutions. We define a fixed time-stepτ , and we assume
that power density is constant in time intervals[nτ, (n+1)τ [
wheren is any integer. The time convolution (5) becomes a
discrete convolution :

u(mτ) =
m−1
∑

n=0

∫ (n+1)τ

nτ

p(t)
∂uH

∂t
(mτ − t)dt

=
m−1
∑

n=0

p(nτ)[uH((m − n)τ) − uH((m − n − 1)τ)] (6)

= p(0)uH(mτ)

+
m−1
∑

n=1

[p(nτ) − p((n − 1)τ)]uH((m − n)τ) (7)

where we used the fact thatuH(0) = 0. As computing
uH(t) involves a large number of operations,uH is com-
puted for a few values oft according to a geometric se-
ries, and interpolation is used for other values. Moreover,
someuH(nτ) values are memoized for further speed-up.
Yet, computation time is still proportional tom2.

To solve this problem, we implemented a method that we
call event compression. To our knowledge, this is an origi-
nal method. Event compression tries to decrease the number
of summands in the discrete convolution. Indeed, in equa-
tion (7), if there exists ann such thatp(nτ) = p((n− 1)τ),
the corresponding summand is null. The basic principle of
event compression is to merge consecutive events. More
precisely, we replace consecutivep(nτ) values with their
common average value. Merging events preserves the total
energy (when events have different durations because they
result from previous merging, we compute a weighted aver-
age).

We used two event-compression methods and combined
them. The first event-compression method is based on the
observation that, whenp(nτ) ≈ p((n − 1)τ), merging the
two events keeps temperature approximately the same (cf.
Equation (6)).

The second event-compression method is based on the
observation that ifuH((m − n)τ) − uH((m − n − 1)τ)
is constant for consecutive time-stepsn andn + 1, merg-
ing the events does not change the overall sum in equation
(6). Following this observation, we merge the events when
uH((m−n)τ)− uH((m−n− 1)τ) is approximately con-
stant for several consecutive time-steps. This happens for

large values ofm−n, as the second derivative ofuH(t) con-
verges to 0. As time increases, old power events are progres-
sively merged thanks to the second compression method.
As old events get merged, this creates new opportunities for
further compression with the first method.

A physical interpretation of event compression is that, as
power events get old, what matters is the quantity of energy
that these events represent, not the precise times at which
energy was released.

In the ATMI software, the loss of accuracy introduced by
event-compression is controlled with a parameter, i.e., we
merge events only when the error introduced does not ex-
ceed the parameter value. The speed-up provided by event-
compression depends on the parameter value : the larger the
error tolerance, the faster.

3.2. The ATMI software

The ATMI software is a library written in C. It is pub-
licly available under the GNU General Public Licence [1].
ATMI compiles under Linux and requires the GNU Scien-
tific Library [2]. This section provides an overview of the
software. A more detailed description is given in the ATMI
manual [1].

The ATMI model features 9 physical parameters (cf. Fig-
ure 1) :z1, d = z2− z1, k1, k2, α1, α2, h1, h2 andL. These
9 parameters are gathered in a C structure :

s t r u c t atmi param {
double z1 ; /∗ l a y e r 1 t h i c k n e s s (m) ∗ /
double d ; /∗ l a y e r 2 t h i c k n e s s (m) ∗ /
double k1 ; /∗ l a y e r 1 the r ma l c o n d u c t i v i t y (W/mK)∗ /
double a1 ; /∗ l a y e r 1 the r ma l d i f f u s i v i t y (mˆ 2 / s)∗ /
double k2 ; /∗ l a y e r 2 the r ma l c o n d u c t i v i t y (W/mK)∗ /
double a2 ; /∗ l a y e r 2 the r ma l d i f f u s i v i t y (mˆ 2 / s)∗ /
double h1 ; /∗ l a y e r 1 / l a y e r 2 (W/mˆ2K) ∗ /
double h2 ; /∗ l a y e r 2 / ambient (W/mˆ2K) ∗ /
double L ; /∗ w id th (m) ∗ /
. . .

} ;

ATMI works with SI units. In particular, distances are ex-
pressed in meters, times in seconds, and temperatures in
kelvin or degrees Celsius. The 9 parameters can be set ei-
ther directly, with the function

a t m i s e t p a r a m (. . .)

or with the function

vo id a t m i f i l l p a r a m (
s t r u c t atmi param ∗p ,
double c e l s i u s z o n e , /∗ (C) ∗ /
double h e a t s i n k r e s i s t a n c e , /∗ (K /W) ∗ /
double h e a t s i n k w i d t h , /∗ (m) ∗ /
double c o p p e r t h i c k n e s s , /∗ (m) ∗ /
double b u l k s i l i c o n t h i c k n e s s , /∗ (m) ∗ /
double i n t e r f a c e t h i c k n e s s , /∗ (m) ∗ /
double i n t e r f a c e t h e r m a l c o n d) ; /∗ (W/mK) ∗ /

which sets parametersk1,k2,α1 andα2 corresponding to sil-
icon (layer 1) and copper (layer 2). The value ofh1 is set by
providing the interface material thickness and thermal con-
ductivity (cf. equation (1)). The value ofh2 is set by provid-
ing the heat-sink width and thermal resistance (cf. equation

(2)). Parametercelsiuszoneis a temperature used to deter-
mine silicon characteristics. For example, if we expect tem-
perature on the chip to be between 40◦C and 100◦C, we
may setcelsiuszoneto 70.

ATMI is built around a set of core functions providing
heat-equation solutions. We describe in this document only
the two most useful ones.

double a t m i r e c t (
s t r u c t atmi param ∗p ,
double q , /∗ power d e n s i t y (W/mˆ 2)∗ /
double a , double b , /∗ r e c t s i z e (m) ∗ /
double x , double y , /∗ p o i n t coord (m) ∗ /
double t , /∗ t ime (s) ∗ /
char s t e a d y) ;

This function gives the relative temperature on the plane
z = 0 at time t generated by a rectangle sourcewhen
L = ∞, i.e, when layers 1 and 2 are infinite in thex and
y directions. The source is assumed to dissipate no power
for t < 0, and a constant and uniform power densityq (in
W/m2) for t ≥ 0. Parametersa andb are respectively the
width (x) and height (y) of the rectangle source. Parame-
ters(x, y) are the coordinates of the measure point, taking
the rectangle center as the origin. If parametersteadyis null,
the function gives temperature at timet, otherwise it gives
the steady-state temperature (t → ∞).

The impact of the heat-sink width is modeled with a sep-
arate function :

double a tm i ima ge s (
s t r u c t atmi param ∗p ,
double power , /∗ (W) ∗ /
double t , /∗ t ime (s) ∗ /
char s t e a d y) ;

This function gives the temperature contribution from the fi-
nite value ofL as a function of time. This contribution be-
comes null asL → ∞. Here,power is the total power (in
watts) dissipated on the chip : it is null fort < 0 and con-
stant fort ≥ 0. This contribution must be added to the tem-
perature values obtained with functionatmi rect().

Here is an example (partial) program :

s t r u c t atmi param p ;
a t m i s e t p a r a m (&p , . . .) ;
double a1 = 1e−3; /∗ s i d e 1 s t square (m) ∗ /
double a2 = 2e−3; /∗ s i d e 2nd square (m) ∗ /
double b = 5e−3; /∗ d i s t a n c e between s qua r e s (m)∗ /
double q = 1e6 ; /∗ power d e n s i t y (W/mˆ 2) ∗ /
double Tamb = 45 ; /∗ l o c a l ambient (C) ∗ /
double t = 0 . 1 ; /∗ t ime (s) ∗ /
double pw = q∗(a1∗a1+a2∗a2) ; /∗ power (W) ∗ /

double T1 = Tamb + a t m i r e c t (&p , q , a1 , a1 , 0 , 0 , t , 0)
+ a t m i r e c t (&p , q , a2 , a2 ,−b , 0 , t , 0)
+ a tm i ima ge s (&p , pw , t , 0) ;

This example considers two square sources whose centers
areb = 5 mm away from each other, and with the same
power density (q = 0 for t < 0, q = 1 W/mm2 for
t ≥ 0). The temperature of the air hitting the heat sink is
Tamb = 45◦C. The example computes the temperature in
◦C at the center of the first square aftert = 0.1 s. It should

Figure 3: Example of steady-state temperature map ob-
tained with the atmi steadygrid() function.

be noted that this example uses the principle of superposi-
tion.

The ATMI software provides some functions that auto-
mate the use of the principle of superposition. The follow-
ing function takes as input a set of rectangle sources, each
source being specified by its coordinates and power den-
sity :

vo id a t m i s t e a d y r e c t (
s t r u c t atmi param ∗p ,
i n t n re c t , /∗ number o f r e c t a n g l e s ∗ /
s t r u c t a t m i r e c t r c [] , /∗ r e c t a n g l e c o o r d i n a t e s∗ /
double q [] , /∗ power d e n s i t y ∗ /
double t e m p e r a t u r e []) ;

It returns in the arraytemperature[]the steady-state rela-
tive temperature at the center of each rectangle. Here,nrect
is the number of rectangles,rc[] are the rectangles coor-
dinates andq[] are the power densities in each rectangle.
Nevertheless, the computation time ofatmi steadyrect() in-
creases as the square of the number of rectangles. For very
detailed power density maps, we have implemented a FFT-
based spatial convolution in the following function :

vo id a t m i s t e a d y g r i d (
s t r u c t atmi param ∗p ,
i n t nx , i n t ny , /∗ number o f s qua r e s∗ /
double g r i d u n i t , /∗ s qua r e s s i z e ∗ /
a t m i g r i d q , /∗ power d e n s i t y ∗ /
a t m i g r i d t e m p e r a t u r e) ;

Theatmi grid type is defined as

t y p e d e f double a t m i g r i d [1 0 2 4] [1 0 2 4] ;

Here, we considernx × ny square power sources (nx ≤
1024, ny ≤ 1024), all squares having the same side length
gridunit. Theatmi steadygrid() function takes as input the
power density gridq and returns in thetemperaturegrid
the steady-state relative temperature at the center of each
square.

Figure 3 shows an example of steady-state temperature
map obtained withatmi steadygrid(). In this example, the
grid consists of180×230 squares, andatmi steady grid()
takes about 2 seconds to execute on a 3 GHz Pentium 4
with the default (conservative) settings of the ATMI 1.0.6
release.

The principle of superposition as stated by equation (3),
is very general and applies to any time-varying power den-
sity. The following example gives the transient temperature
at the center of a square source which is on for1 ms and off
the rest of the time :

double a = 0 . 0 0 1 ; / / square s i d e
double q = 1e6 ; / / power d e n s i t y
double d u r a t i o n = 0 . 0 0 1 ;

double s t e p r e s p o n s e (double t) {
re turn (t <=0)? 0 : a t m i r e c t (&p , q , a , a , 0 , 0 , t , 0) +

a tm i ima ge s (&p , q∗a∗a , t , 0) ;
}

double t e m p e r a t u r e (double t) {
re turn s t e p r e s p o n s e (t)−s t e p r e s p o n s e (t−d u r a t i o n) ;

}

However, for more complex cases, manipulating ATMI core
functions directly becomes impractical. The ATMI software
also provides functions that automate the principle of super-
position for time-varying rectangle sources. The following
function initializes athermal simulator:

vo id a t m i s i m u l a t o r i n i t (
s t r u c t a t m i s i m u l a t o r ∗ t s ,
c o n s t char ∗ f i l e na me ,
s t r u c t atmi param ∗p ,
double t ime s te p ,
i n t n re c t ,
i n t nsens ,
s t r u c t a t m i r e c t r c [] ,
i n t s e n s o r [] ,
double i n i t q [] ,
double wmax) ;

Parametertimestepcorresponds to the time-stepτ in equa-
tion (7) and is expressed in seconds. Power density in
each rectangle is considered constant between timesn ×
timestep and(n+1)× timestep, n being any integer. The
thermal simulator gives only the temperature at the center
of rectangles, and only for rectangles that are declared as
sensors. The number of sensorsnsensmust not exceed the
number of rectanglesnrect. The list of sensors is declared in
the arraysensor[]. For example, if the power density map
consists ofnrect = 4 rectangles and we want tempera-
ture only in the first and last rectangles, we should declare
nsens = 2 andsensor[2] = {0, 3}. The thermal simulator
initialization phase may take a long time ifnrect × nsens
is large. This is the time necessary to compute the tempera-
ture responsesuH(x, y, t) for each source and each sensor.
These temperature responses depend only on ATMI param-
eters and rectangles coordinates. If we want to run several
simulations with the same ATMI parameters and the same
set of rectangles, it is possible to compute the thermal re-
sponses once for all and store them in a file whose name
is filename. The file is automatically created at the first ex-
ecution ofatmi simulator init. Before starting the simula-
tion, the simulated chip must be put in a meaningful thermal
state. This is done by passing initial power densitiesinitq
corresponding to each rectangle. This initial power density
is applied for a time that is long enough to reach a steady

i n c l u d e <s t d l i b . h>
i n c l u d e <s t d i o . h>
i n c l u d e ” a tmi . h ”

d e f i n e XS 0.002
d e f i n e XL 0.008
d e f i n e Q1 1e6
d e f i n e Q2 4e6

s t r u c t a t m i r e c t r c [2] = {
{−XS/2 ,−XS/ 2 ,XS / 2 ,XS/2} ,
{−XL/2 ,−XL/ 2 ,XL / 2 ,XL/2 }

} ;
i n t s e n s o r [1] = {0} ;
double i n i t q [2] = {0 ,Q1} ;
double q [2] = {0 ,0} ;
s t r u c t atmi param p ;
s t r u c t a t m i s i m u l a t o r t s ;

main ()
{

a t m i f i l l p a r a m (&p , 7 5 , 0 . 3 , 0 . 0 7 , 5 e−3,5e−4,5e−5 ,4) ;
a t m i s i m u l a t o r i n i t (& t s ,NULL,&p , 2 e−4 ,2 ,1 , rc , s e ns o r ,

i n i t q , 1 e10) ;
whi le (t s . t <= 2 0 0 .) {

q [0] = (t s . t < 5e−3)? 0 : Q2 ;
q [1] = (t s . t < 5e−3)? Q1 : 0 ;
a t m i s i m u l a t o r s t e p (& ts , q) ;
p r i n t f (” %8.3e %8.3e\n” , t s . t , t s . t e m p e r a t u r e [0]) ;

}
}

Figure 4: Example of program using the ATMI ther-
mal simulator. The data produced by this program
is plotted in Figure 5.

state. When simulating a thermally-constrained processor
with automatic thermal management, the temperature on the
chip cannot exceed a certain value. This is what parame-
ter wmaxis for. For example, if the ambient temperature is
30◦C and the maximum allowed temperature on the chip is
85◦C, parameterwmaxshould be set to 55 (= 85 − 30) to
guarantee a consistent initial thermal state. Once the ther-
mal simulator is initialized, each call to the following func-
tion simulates a time-step :

vo id a t m i s i m u l a t o r s t e p (
s t r u c t a t m i s i m u l a t o r ∗ t s ,
double q []) ;

where q[] is the power density in each rectangle dur-
ing this particular time-step. After each execution
of atmi simulatorstep(), the relative temperature at
each sensor is stored in the arraytemperature[] of the
atmi simulator structure. The event-compression method
described in Section (3.1) is used inatmi simulatorstep().

Figure 4 shows a full program using the ATMI thermal
simulator. This programs simulates 2 square sources, a large
one (8 mm) and a small one (2 mm). The small square is at
the center of the large square. Fromt = −∞ to t = 5 ms,
power density in the large square is1 W/mm2, while the
small square is turned off. Att = 5 ms, power density in
the small square is set to4 W/mm2 while the large square
is turned off. Figure 5 shows the relative temperature as a
function of time.

 0

 10

 20

 30

 40

 50

 60

 70

 0.001 0.01 0.1 1 10 100

ce
ls

iu
s

ov
er

 a
m

bi
en

t

time (seconds)

ATMI
FF3D

Figure 5: Temperature as a function of time ob-
tained with the C program of Figure 4. The second
curve, almost indistinguishable, was obtained by
solving the heat equation with the finite-element
solver FreeFEM3D [3].

3.3. Validation and limitations

In order to check the correctness of the software im-
plementation, we have reproduced with ATMI some tem-
perature numbers published in [8, 23, 11]. Moreover,
we did some comparisons with the finite-element solver
FreeFEM3D [3] (for instance, Figure 5 shows the curve ob-
tained by solving the heat equation with FreeFEM3D,
which is almost indistinguishable from that obtained
with ATMI). These multiple verifications give us con-
fidence that ATMI is correctly implementedunder the
physical approximations made.

Some of the physical approximations were mentioned
explicitly in Section 2, in particular chip edges that are
not modeled. There are some other approximations, among
which modeling the heat-sink as a cuboid, neglecting the
heat transfer through the chip pins, and not modeling the
material heterogeneity in transistors and connections lay-
ers.

The qualitative behaviors obtained with ATMI are con-
sistent with Fourier’s law of heat conduction. However, the
temperature numbers given by ATMI are that of an idealized
physical system whose parameters may need proper adjust-
ment in order to imitate a real system and obtain quantita-
tive accuracy. For instance, a straightforward setting of pa-
rametersTamb andh2 allowed us to reproduce with ATMI
some of the temperature numbers published in [23] for a
heat-sink with a vapor chamber.

4. Applications of ATMI

This section provides three example applications using
ATMI. The first one is a simple example showing that nei-
ther power nor local power density can be used as a substi-
tute for temperature. The second example shows the impact
of static power being dependent on temperature. The third

2 mm

0.5 W/mm^2

10 mm

local power
density

Figure 6: Example of Section 4.1.

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 2 1.5 1 0.5
T

-T
am

b
(C

)
local power density (W/mm^2)

Figure 7: Cf. Figure 6. Steady-state relative tem-
perature at the square center as a function of local
power density. ATMI parameters are set as in Fig-
ure 4.

example studies the placement of thermal sensors, which is
an important issue for thermally-constrained microproces-
sors. This problem has already been studied (e.g., [14, 20]),
but we provide an original alternative approach. Another
ATMI application for OS research can be found in [18].

4.1. Temperature is neither power nor power density

Temperature at a given point depends both on the to-
tal power dissipated by the chip and on the power density
around the point. Figure 6 illustrates this situation. The chip
is modeled as a1 cm×1 cm square. A2 mm×2 mm square
representing a functional unit is located at the center of the
chip. Power density on the chip is0.5 W/mm2 except in
the small square. We set the ATMI parameters as in Figure 4
and we plot on Figure 7 the steady-state relative temperature
at the square center. When the local power density in the
small square goes from0.5 W/mm2 to2 W/mm2, the total
power on the chip goes from50 W to 56 W , i.e., a12% in-
crease. Yet, the relative temperature increase is about50%.
This example shows that neither power nor local power den-
sity alone can be used as a substitute for temperature. Tem-
perature is a function of the whole power density distribu-
tion.

Tinit = 100◦C Tinit = 80◦C

-3.8
-3.6
-3.4
-3.2
-3
-2.8
-2.6
-2.4
-2.2

-0.6
-0.5
-0.4
-0.3
-0.2
-0.1
 0
 0.1
 0.2

Figure 8: Same configuration as in Figure 6 but
power density depends on temperature. Func-
tion atmi steadygrid() is used iteratively. The picture
shows the difference between the final tempera-
ture map and the first temperature map computed
with power density corresponding to Tinit (100◦C
and 80◦C).

4.2. Power density depending on temperature

The subthreshold leakage current of MOSFETs depends
on temperature. If an accurate static power consumption
model is available, one can obtain a more accurate steady-
state temperature by iteratingatmi steadygrid() until tem-
perature converges.

To illustrate this, we have defined a100 × 100 grid on
the same example as in Section 4.1 but with power density
computed as follows. We assume that, at 100◦C, power den-
sity is 50% static and 50% dynamic, and that the total power
density is2 W/mm2 in the small square and0.5 W/mm2

elsewhere. To model the dependence of static power on tem-
perature, we used the model given in [16], which is based on
BSIM4 gate leakage and subthreshold leakage model. We
used the parameters given in [16] for logic circuits in65 nm
technology. We assumeVdd = 1 V andTamb = 45◦C.

First we compute the power density map based on a fixed
initial temperatureTinit. We compute the temperature map
corresponding to this power density. Then we recompute the
power density map with the detailed temperature map, and
we compute a new temperature map, and so on. We iterate
until the maximum difference between consecutive temper-
ature maps does not exceed0.001 ◦C. In practice, tempera-
ture converges very quickly.

Figure 8 shows the difference between the final tem-
perature map and the first temperature map computed with
power density corresponding toTinit. On this example, the
actual (final) temperature on the chip is between 65◦C and
90◦C. When static power is computed withTinit = 100◦C,
the initial temperature map overestimates the actual temper-
ature : the actual temperature is2.2◦C to 3.8◦C lower than
indicated by the first temperature map. As can be seen in
Figure 8, takingTinit = 80◦C gives a first temperature map
which is within 1◦C of the actual temperature.

This example suggests that a rough guess of the final av-
erage temperature may be sufficient to obtain a reasonably

accurate temperature map.

4.3. Thermal sensors placement

When designing a thermally-constrained microproces-
sor, one must decide where to put temperature sensors
[14, 20].

The power density map generated when an application
executes on a processor depends on the application charac-
teristics. A systematic method for placing thermal sensors
requires to collect a set of power density maps by simulat-
ing a large number of real-life applications. This set may be
extended with some power density maps corresponding to
worst-case scenarios. Ideally, we would like to put a sen-
sor at every location that may be a hot spot. However, in
practice, we want to minimize the number of sensors. For
example, if a processor consists ofN functional units that
may be independently active or inactive, there exists2N dis-
tinct configurations, hence2N distinct power density maps.
If we place a sensor at the hottest location for each configu-
ration, we may need up to2N sensors.

To obtain a reasonable number of sensors, we should
work with a temperature margin. We want temperature on
the chip to not exceed a fixed valueTmax, but we assume
that sensors trigger thermal throttling when temperature
reaches a fixedTlim < Tmax. To simplify the discussion,
we assume that power density does not depend on tempera-
ture. Moreover, we assume that the ambient temperature is
bounded :

Ta ≤ Tamb ≤ TA

For each configuration, we compute the maximum rela-
tive temperaturemax{u(x, y)}, whereu(x, y) is the rel-
ative temperature when there is no thermal limitation. If
TA + max{u(x, y)} ≤ Tmax, the configuration is not ther-
mally critical, and we ignore it.

Otherwise, it means that thermal throttling may be trig-
gered on this configuration. We assume that all functional
units are throttled with the same duty cycleλ ∈ [0, 1], so
we can apply the principle of superposition. Under thermal
throttling, the temperature is

T (x, y) = Tamb + λu(x, y)

Let us assume that we place the thermal sensor for that con-
figuration at point(xs, ys). Under thermal throttling, we
haveT (xs, ys) ≈ Tlim, that is,

λ =
Tlim − Tamb

u(xs, ys)

Then,

T (x, y) = Tamb +
u(x, y)

u(xs, ys)
(Tlim − Tamb)

A point (xs, ys) is a potential sensor location if
max{T (x, y)} ≤ Tmax, that is,

u(xs, ys) ≥ max{u(x, y)}
Tlim − Tamb

Tmax − Tamb

(8)

The set of potential sensor locations gets smaller with
smaller values ofTamb. Hence we consider the sensor lo-
cations corresponding to the lowest value ofTamb that re-
quires thermal throttling, which is

Tamb = max(Ta, Tmax − max{u(x, y)}) (9)

Inequation (8), withTamb given by (9), defines a set ofac-
ceptablesensor locations for that configuration. We com-
pute the set of acceptable sensor locations for each config-
uration (after eliminating configurations that cannot trigger
thermal throttling). Then we associate with each point(x, y)
the setS(x, y) of configurations for which(x, y) is an ac-
ceptable sensor location. For instance, if configurations are
numbered from1 to M , we haveS(x, y) ⊆ [1, M]. We try
to find a minimum set of points{(xi, yi)} such that

⋃

i

S(xi, yi) = [1, M] (10)

Points{(xi, yi)} are the points where sensors should be
placed. The problem of finding a minimum set of points
that verifies (10) is an instance of the set covering problem
[5], which is NP-hard.

We implemented this method on an artificial example
whose purpose is just to show that the method is feasible.2

We model the processor as a12 mm × 12 mm square con-
sisting of 16 square units, as depicted in Figure 9. We as-
sume that each unit may be active independently, and that
the power density in an active unit is1 W/mm2. Hence
there are216 distinct configurations. To compute the tem-
perature maps, we used theatmi steadygrid() function. The
grid size is60×60. Though a single temperature map can be
computed quickly, executing theatmi steadygrid() func-
tion216 times requires hours of computation time. Actually,
the216 temperature maps can be computed much faster than
that, by using the principle of superposition. Each of the
216 power density maps is a linear combination of 16 base
power density maps, where each base power density map
corresponds to a single active unit, all the other units be-
ing inactive. We executeatmi steadygrid() on the 16 base
power density maps and obtain 16 base temperature maps.
From the principle of superposition, the216 temperature
maps are obtained by a linear combination of the 16 base
temperature maps. On a 3 GHz Pentium 4, we obtain the
216 temperature maps in less than 1 minute.

2 In practice, the number of distinct power density maps should be
smaller than in this example, as functional units have correlated ac-
tivity rates when the processor executes real-life applications.

1

2

3

4

5

6

7

8
9

10

11

12

13

Figure 9: Example of thermal sensors placement
using a greedy algorithm. Here, Tmax = 85◦C and
Tlim = 83◦C.

For this example, we usedTmax = 85◦C, Ta = 5◦C,
TA = 50◦C, heat-sink thermal resistanceRhs = 0.3 K/W
and widthL = 0.07 m, copper thicknessd = z2 − z1 =
5 mm, silicon thicknessz1 = 0.5 mm, interface mate-
rial thicknessdi = 50 µm and thermal conductivityki =
4 W/mK.

We obtained sensor locations{(xi, yi)} with a greedy
heuristic. First, we choose a point(x1, y1) that covers the
greatest number of configurations, i.e., such thatS(x1, y1)
is largest. We place the first sensor at(x1, y1). Then we
place the second sensor at the point(x2, y2) that covers the
greatest number of configurations not already covered by
sensor 1. Then we place the third sensor at the point(x3, y3)
that covers the greatest number of configurations not al-
ready covered by sensors 1 or 2. And so on, until all con-
figurations (minus those that do not trigger thermal throt-
tling) are covered. The rank of a sensor reflects its impor-
tance : the first sensor covers a large number of configura-
tions, while the last sensor covers a small number of config-
urations.

We ran the algorithm withTlim = 84◦C, i.e.,1◦C be-
low Tmax. The greedy algorithm found that 29 sensors were
necessary, some of these sensors being very close to each
other, which means that the number of sensors could be de-
creased by a slight increase of the temperature margin. We
increased the temperature margin by settingTlim = 83◦C.
The result is given on Figure 9, with sensors represented
by numbers indicating their rank. This time, 13 sensors are
sufficient. It can be noticed that the distribution of sensors is
approximately regular, except for sensor #13 (in fact, sensor
#13 covers a single configuration. As it is close to sensor #3,
one may want to remove it by further enlarging the temper-
ature margin). The cost of having only 13 sensors is a slight
performance loss under thermal throttling because the duty
cycle is Tlim−Tamb

u(xs,ys) instead ofTmax−Tamb

u(xs,ys)
. The worst-case

performance loss isTmax−Tlim

Tmax−TA
≈ 6%.

5. Conclusion

ATMI is not the only chip-temperature model avail-
able. Some other specialized models have been released,
e.g., [22, 12, 24]. However, having several models available
gives more choice to the user and permits cross-validating
the different models. For example, if a given temperature
model generates counter-intuitive results and the user is not
sure to use the model correctly, having a second model is
useful. The cross-validation is stronger if there is some di-
versity in the methods used by the different models.

What distinguishes ATMI from other models is that
ATMI relies on explicit analytical solutions to the heat equa-
tion. In particular, ATMI does not rely on any discretization
of the temperature field.

Another distinguishing feature of ATMI is that it is based
on the principle of superposition and the method of images.
Though using the ATMI software does not necessitate un-
derstanding them, these principles, especially the principle
of superposition, provide intuition about temperature. In-
tuition about temperature can also be obtained from sim-
ple examples, as illustrated in this paper. Indeed, simple ex-
amples often exhibit qualitative behaviors whose general-
ity can be tested with further examples. Yet, these qualita-
tive behaviors can be best understood if one understands the
principle of superposition.

Nevertheless, ATMI is compatible with the usual quanti-
tative method in computer architecture studies and can eas-
ily be integrated in a performance/power microarchitecture
simulator like SimpleScalar/Wattch, to simulate the impact
of thermal throttling on performance.

References
[1] ATMI. http://www.irisa.fr/caps/projects/ATMI.

[2] GNU Scientific Library. http://www.gnu.org/software/gsl/.

[3] FreeFEM3D. http://www.freefem.org/ff3d/.

[4] H. Carslaw and J. Jaeger.Conduction of heat in solids. Ox-
ford University Press, 1959.

[5] T. Cormen, C. Leiserson, and R. Rivest.Introduction to al-
gorithms. MIT Press, 1990.

[6] J.-M. Dorkel, P. Tounsi, and P. Leturcq. Three-dimensional
thermal modeling based on the two-port network theory
for hybrid or monolithic integrated power circuits.IEEE
Transactions on Components, Packaging, and Manufactur-
ing Technology, 19(4):501–507, Dec. 1996.

[7] D. Fetis and P. Michaud. An evaluation of HotSpot-3.0
block-based temperature model. InProceedings of the Fifth
Annual Workshop on Duplicating, Deconstructing, and De-
bunking, 2006.

[8] T. Fisher, C. Avedisian, and J. Krusius. Transient thermal re-
sponse due to periodic heating on a convectively cooled sub-
strate. IEEE Transactions on Components, Packaging, and
Manufacturing Technology - Part B, 19(1), Feb. 1996.

[9] J. Fourier.The analytical theory of heat. Dover Publications.

[10] V. Gektin, R. Zhang, M. Vogel, G. Xu, and M. Lee. Substan-
tiation of numerical analysis methodology for CPU package
with non-uniform heat dissipation and heat sink with sim-
plified fin modeling. InProceedings of the 9th Intersociety
Thermal Phenomena (ITherm) Conference, 2004.

[11] T. Goh, K. Seetharamu, G. Quadir, Z. Zainal, and K. Gane-
shamoorthy. Thermal investigations of microelectronic chip
with non-uniform power distribution : temperature predic-
tion and thermal placement design optimization.Microelec-
tronics International, 21(3):29–43, Dec. 2004.

[12] T. Heath, A. P. Centeno, P. George, L. Ramos, Y. Jaluria,and
R. Bianchini. Mercury and Freon : temperature emulation
and management in server systems. InProceedings of the
International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, 2006.

[13] A. Kokkas. Thermal analysis of multiple-layer structures.
IEEE Transactions on Electron Devices, ED-21(11):674–
681, November 1974.

[14] K.-J. Lee, K. Skadron, and W. Huang. Analytical model for
sensor placement on microprocessors. InProceedings of the
International Conference on Computer Design, 2005.

[15] P. Leturcq, J.-M. Dorkel, A. Napieralski, and E. Lachiver.
A new approach to thermal analysis of power devices.
IEEE Transactions on Electron Devices, ED-34(5):1147–
1156, May 1987.

[16] W. Liao, L. He, and K. Lepak. Temperature and supply volt-
age aware performance and power modeling at microarchi-
tecture level.IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 24(7):1042–1053, July
2005.

[17] D. Maillet, S. André, J. Batsale, A. Degiovanni, and
C. Moyne. Thermal quadrupoles - Solving the heat equa-
tion through integral transforms. Wiley, 2000.

[18] P. Michaud and Y. Sazeides. Scheduling issues on thermally
constrained processors. Technical Report PI-1822, IRISA,
2006. Also published as INRIA report RR-6006.

[19] P. Michaud, Y. Sazeides, A. Seznec, T. Constantinou, and
D. Fetis. An analytical model of temperature in micropro-
cessors. Research report RR-5744, INRIA, Nov. 2005.

[20] R. Mukherjee and S. Memik. Systematic temperature sensor
allocation and placement for microprocessors. InProceed-
ings of the 43rd Annual Conference on Design Automation,
2006.

[21] J. Parry, H. Pape, D. Schweitzer, and J. Janssen. Transient
performance of common modeling assumptions used in de-
tailed thermal package models. InProceedings of the 8th
THERMINIC Workshop, 2002.

[22] K. Skadron, M. Stan, W. Huang, S. Velusamy, K. Sankara-
narayanan, and D. Tarjan. Temperature-aware microarchitec-
ture. InProceedings of the 30th Annual International Sym-
posium on Computer Architecture, 2003.

[23] G. Xu, B. Guenin, and M. Vogel. Extension of air cooling
for high power processors. InProceedings of the 9th Inter-
society Thermal Phenomena (ITherm) Conference, 2004.

[24] Y. Yang, Z. Gu, C. Zhu, R. Dick, and L. Shang. ISAC : Inte-
grated space-and-time-adaptive chip-package thermal analy-
sis. IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, 26(1):86–99, Jan. 2007.

