
The Danger of Interval-Based Power Efficiency
Metrics: When Worst Is Best

Yiannakis Sazeides�, Rakesh Kumar�, Dean M. Tullsen�, and Theofanis Constantinou�

�Department of Computer Science �Department of Computer Science and Engineering
University of Cyprus, Nicosia University of California, San Diego

Abstract— This paper shows that if the execution of a program
is divided into distinct intervals, it is possible for one processor or
configuration to provide the best power efficiency over every in-
terval, and yet have worse overall power efficiency over the entire
execution than other configurations. This unintuitive behavior is
a result of a seemingly intuitive use of power efficiency metrics,
and can result in suboptimal design and execution decisions.
This behavior may occur when using the energy-delay product
and energy-delay� product metrics but not with the energy metric.

I. INTRODUCTION

Power is increasingly becoming a limiting design factor.
High peak power can compromise the correctness of a high-
end processor, whereas high energy may limit battery life for
mobile/embedded devices. Thus, virtually any processor, from
embedded to the most aggressive, is designed to optimize some
combination of power and performance. To help measure and
compare power efficiency, several metrics have been proposed.

One of the first proposed power efficiency metrics was the
energy-per-operation [3], also seen in its inverse form, the mil-
lions of instructions per second per Watt (MIPS/Watt) metric.
This represents the performance achieved per consumed watt.
For many systems, however, performance is more critical than
this metric accounts for. Consequently, other metrics such as
the energy-delay product (EDP) [4] and energy-delay � product
(ED�P) [2], have been proposed to emphasize performance
more strongly. The various power efficiency metrics are widely
used by the architectural research community to compare and
quantify the quality of new ideas related to power.

This work shows that a seemingly intuitive use of the EDP
and ED�P metrics can result in unintuitive behavior when
applied to virtually any interval-based optimization. Selecting
the best configuration or processor at each interval (based on a
particular metric) may result in a solution that is far from the
optimal. In fact, we show that even when a single processor or
configuration has the best power efficiency over every interval,
another configuration may have the best power efficiency over
the entire execution. This behavior, referred to henceforth as
best-worst-behavior (BWB), has significant implications for
any interval-based or adaptive optimization.

BWB was observed experimentally in [5] where a single-
ISA heterogeneous multi-core architecture is proposed as the
means to reduce power. In [5], it is stated that even under
perfect knowledge of the delay and energy characteristics at
the granularity of intervals, choosing the core that minimizes

This work has been supported by the University of Cyprus, Intel, HiPEAC,
and NSF grant CCR-0311683.

Manuscript submitted: 2 Nov. 2004. Manuscript accepted: 22 Dec. 2004.
Final manuscript received: 7 Jan. 2005.

the EDP over each interval may not give an optimal power-
efficiency solution. However, BWB was not clearly defined and
neither its causes nor its ramifications were discussed.

This paper presents an example where BWB is observed
when using the EDP metric (Section II). It explains the reason
for this behavior and shows that it can also occur with the
ED�P but not the energy metric (Section III and Section IV).
Finally, it discusses some implications of BWB and provides
direction for future work (Section V).

II. EXAMPLE SCENARIO WITH BWB

This section describes a scenario where the best-worst-
behavior (BWB) is observed when using the EDP.

Consider the dual-core heterogeneous-chip-
multiprocessor [6] shown in Fig. 1 that aims to increase
power efficiency by having only one of the two cores active
at a time, and by transferring the execution of a process
from one core to the other when it is likely the execution
on the new core will be more power efficient. A core may
represent a better match for a given program phase because
each core can include different resources or may be clocked
at a different frequency.

To determine the power-efficiency limits of the above
approach an experimental study was performed based on
the sim-wattch [1] simulator using SPEC95 and SPEC2000
benchmarks. Each benchmark was run for the first four billion
instructions using reference inputs. Each core was modeled
using the default sim-wattch out-of-order processor with the
key core parameters taking the values shown in Fig. 1.
The cores are out-of-order processors clocked at the same
frequency, but core P1 has a simpler branch predictor and
smaller data cache, issue width, and number of execution units.
Thus P1 provides lower performance but consumes less power
than P2. The somewhat exaggerated data cache configuration
of P2 is chosen for illustrative purposes.

Core switches take place at fixed-size intervals of � commit-
ted instructions and the switch decisions are made with oracle
knowledge of which of the two cores has lower EDP for that
interval. The study assumed that there is no performance or
energy penalty for core switches (either for the transfer or
cold start effects) and that an inactive core does not consume
energy. It should also be noted that in the case of time-based
intervals the problem is very similar, but the demonstration
and derivation of the problem is simplified by this definition
of an interval.

Under these assumptions, one might expect to achieve better
(or no worse) power efficiency than running on either of the

core D$ Width IntALU Branch Pred
P1 8KB 2 2 Bimodal 2KB
P2 128KB 4 4 Gshare 2KB

L2$

P1
I$ D$

P2
I$ D$

Fig. 1. A Heterogeneous Dual-Core Chip Multiprocessor

cores alone, and that the smaller the intervals, the closer
we approach to an optimal solution. As demonstrated in
the following experiments, neither of these expectations are
necessarily true.

To illustrate this counter-intuitive behavior, consider Fig. 2
that shows the results for benchmark gzip. The graph shows
the power efficiency when executing only on core P1, only
on core P2, and dual-core under oracle-driven switches. The
performance for the dual-core is shown for different interval
sizes. Power efficiency is reported in terms of EDP. The lower
the EDP the better the power efficiency.

The data show that for several interval sizes the power
efficiency of the dual-core option is worse than running only
on P1. This, therefore, demonstrates that BWB can occur.
Specifically, by dividing an execution of program gzip into
distinct intervals processor P1 has for each interval same or
worse power efficiency as compared to the dual-core system,
but P1 has overall better power efficiency. The root cause for
the BWB behavior is hidden in the definition of the EDP metric
and in what it means to optimize it. These issues are discussed
in the next section.

BWB behavior was observed for many other benchmarks
and interval sizes. Fig. 3 shows the dual-core’s EDP with
changing interval size for representative benchmarks. The
reported EDP is normalized to the EDP produced when
executing only on core P1. The majority of points have
normalized EDP value greater than one and correspond to
instances of BWB. The remaining points represent cases where
the dual-core had same or better performance than P1.

Fig. 3 reveals distinct trends with decreasing interval size
depending on the benchmark. The EDP improves with smaller
interval size for bzip, remains relatively unchanged for gcc,
and worsens for gzip. The trend of gzip is unintuitive because
it suggests that more frequent per-interval oracle decisions can
lead to worse power efficiency. The behavior with changing
interval size is the subject of Section IV.

To further establish that BWB is not the result of an overly
contrived scenario, Table I shows an example with only two
intervals, and variance between the intervals below 5%. Yet
the oracle is suboptimal in EDP by about 10%. While it is
equally easy to demonstrate cases where the oracle is correct,
the simplicity of this example should create concern for the
generality of this problem.

265

270

275

280

285

290

1M 2M 4M 8M 16M 32M 64M 128M

Interval Size(Instr.)

ED
P

(J
ou

le
s.

se
co

nd
s) p1

p2
dual-core

Fig. 2. Power efficiency with and without core transfers for gzip

0.97

0.98

0.99

1.00

1.01

1.02

1.03

1M 2M 4M 8M 16M 32M 64M 128M

Interval Size(Instr.)

ED
P

(N
or

m
al

iz
ed

)

gcc95
bzip00
gzip00

Fig. 3. Normalized Power efficiency of the Dual-Core with changing interval
size for various benchmarks

III. OPTIMIZING THE Energy-Delay Product

This section examines the definition of the EDP metric, in
particular, and explains the cause of the BWB.

The EDP for a given program execution can be computed
using the expression �� where � and � correspond to the
energy and time spent to execute the program. If a program
execution is broken up into a series of � distinct instruction
intervals then the overall EDP can be obtained by the formula:

�
��

��� ����
��

��� ��� (1)

where �� and �� represent the energy and time spent for the
��� interval.

When for each program interval there are several choices for
energy and delay behavior, such as with adaptive architectures,
then the overall minimum EDP can be determined by choosing
the ��s that solve the following:

�����
��

����
��
� ��
��

��� �
��
� �� (2)

where �� denotes the configuration for interval �.
However, when making interval-by-interval decisions, we in-
stead minimize:

����
��

�����
��
� �

��
� �� (3)

While a solution of equation (2) clearly minimizes (1), a
solution of equation (3) may not (as demonstrated in Sec-
tion II). That is, decisions that minimize the per-interval EDP

TABLE I

EXAMPLE WHERE THE DYNAMIC SELECTION OF THE CORE WITH BEST

POWER EFFICIENCY LEADS TO WORSE POWER EFFICIENCY THAN EITHER

CORE

P1 P2
Interval E� t� EDP E� t� EDP Best EDP Core

1 1 4 4 2 2.1 4.2 P1
2 1 4.1 4.1 2 2 4 P2

Overall 2 8.1 16.2 4 4.1 16.4 (1+2)x(4+2)=18

may not minimize the overall EDP. Therefore, locally optimal
decisions can possibly lead to BWB behavior.

To illustrate the differences between the equations (2) and
(3), consider the case where energy and delay are constant
across two intervals (total time ��, total energy ��, where �

and � now represent the time and energy for a single interval).
If all intervals are identical, the global sum equates to ���, and
the interval sum to ���, different by only a factor (the number
of intervals). If, however, one interval has energy � � 	 and
delay � �
, the global sum is �� � � � 	��� � � �
�, i.e.
��� � ��
 � ��	 � 	
. The interval sum (multiplied by the
factor) is ���� ��
� ��	 � �	
. Thus, it has overstated the
relative impact of the 	
 term by a factor of two. If we had
1000 intervals, the 	
 term would be overstated by a factor of
1000. Thus, the bound on the potential difference between
the two formulations grows with the number of intervals,
and a reasonably long program, even assuming coarse OS
time-slice intervals, could have millions of intervals. This
example assumes variance in only one interval. If all intervals
vary, the bound on the potential difference between the two
formulations can be even greater.

The BWB behavior can potentially occur with just about any
interval-based metric where the overall value is not computed
as the sum of the metric values for each interval. This means
that the BWB can occur with the ED�P metric which is
computed as

�
�

�

�������
�

�

��� ���
�

but not with the energy metric that is computed as
�

�

�����

since it consists only of a single term, and the total is the
additive combination of all interval measurements.

We have chosen the heterogeneous multiple-core architec-
ture to demonstrate this problem, because the dramatic power
difference between reconfigurations highlights the problem.
However, this is a problem for any adaptive mechanism whose
goal is to balance power/energy and performance. This is
relevant to many previous interval-based proposals including
cache reconfiguration, dynamic voltage scaling, instruction
queue reconfiguration, fetch throttling, upsizing/downsizing
optimizations, etc.

The architectures and optimizations are not at fault. Any
adaptive architecture has the ability to improve on (or in the
worst case not worsen) a static architecture. The point of this
paper is that the metrics and mechanisms used to control
adaptations so that (1) performance/power is optimized, or
even (2) guarantee that we do not make matters worse, are
poorly understood.

BWB may also occur when comparing the power efficiency
across benchmarks. Specifically, it is possible for a processor
or configuration to have the best power efficiency for each
benchmark but across all benchmarks to have worse power
efficiency than some other configuration. This is analogous to
a situation where power efficiency is optimized per interval
with the difference that each interval corresponds to a distinct
benchmark. This suggests that when reporting power efficiency
using EDP or ED�P it may be useful to report the overall
power efficiency across all benchmarks.

IV. BEHAVIOR WITH CHANGING INTERVAL SIZE

In Section II we observed trends in power-efficiency, as
we varied the interval size, that appeared to be somewhat
unpredictable and in some cases unintuitive. We attribute those
effects to be due to one or both of the following factors: (a)
the frequency the high power core (P2) is selected with, and
(b) the global effects on power-efficiency when using the high
energy core.

The first claim is supported by the data in Fig. 4 that shows
the fraction of intervals that are executed on core P2 with
changing interval size. A clear correlation can be established
with Fig. 3: (a) for gcc where power-efficiency is relatively
insensitive to the interval size, smaller intervals do not lead
to an increase execution on core P2, and (b) for gzip and
bzip where changing interval size means change in power-
efficiency, smaller intervals result in a larger fraction of the
execution on core P2.

Nevertheless, execution frequency on core P2 is not suffi-
cient to explain the opposite trends observed in Fig. 3 for gzip
and bzip. The second claim can provide a basis to explain this
behavior.

To support the second claim on a simpler example, we will
use the same scenario as in Section II with two heterogeneous
cores P1 and P2. We assume that the interval behavior can be
divided into two categories, fast and slow, and that an interval
is either fast on both cores or slow on both. Further, it is
assumed that the delay on P2 is t for a fast interval and 2.5t
for a slow interval, and on P1 is 2.5t for a fast and 3t for
a slow. Finally, we assume that each core consumes constant
energy per interval, � for P1 and �� for P2. Therefore, if there
are � intervals and the fraction of fast intervals is x, the EDP
for P1 is given by the expression

���������
� � �����
���

that after simplification is equal to:

������� ���
�

and similarly the EDP for P2 is given by:

������� �
��

Based on the above assumptions, P2 has better per-interval
power efficiency for the fast intervals and P1 is better for the
slow. If the execution was transfered to P2 for fast intervals
and to P1 for slow then the EDP with dual-core will be given
by the expression:

�����
�� � ��
��������
�� � �
��

0

10

20

30

40

50

60

1M 2M 4M 8M 16M 32M 64M 128M

Ex
ec

ut
io

n
on

 c
or

e
P2

 (%
 in

te
rv

al
s) gcc95

bzip00
gzip00

Fig. 4. Fraction of Execution on core P2 as a function of Interval Size

which when simplified becomes:

�������
� �
� �� (4)

Fig. 5 shows the EDP for three switching policies: always
choose P1, always choose P2 and dual-core, which uses the
policy described above (equation (4)). The EDP of each policy
is plotted as a function of the fraction of fast intervals. The
data show clearly that P1 is a better choice than P2 unless the
fraction of fast intervals is more than 80%. More interesting is
the behavior of the interval-optimized dual-core policy. As the
number of fast intervals grows its EDP is initially increasing
and getting worse as compared to P1. When the frequency of
the fast intervals grows further, over 25%, the adaptive policy’s
EDP starts improving. However it remains worse than P1 until
the amount of fast interval becomes more than 75%. When the
range of fast intervals is between 75%-90% the interval-based
policy offers better power efficiency than running on either
core alone.

This example only illuminates the behavior trend of gzip.
However, a similar approach can be used to derive another
scenario that explains the behavior trend of bzip.

What is enlightening about the above result is that the nature
of the individual intervals does not change, only the relative
number of each type. Yet, the best policy changes from one
extreme to the other. This highlights the fact that the optimal
choice for any single interval cannot be determined without
knowledge of the complete beginning-to-end behavior of the
whole application.

The results in [5] indicate that it is possible to find good
policies for an adaptive architecture. However, we find here
that finding the optimal, or upper bound, is much more diffi-
cult. This prevents us from fully understanding the potential
of any of these architectures, as long as our measure of power
efficiency is some multiplicative combination of energy and
performance.

The above does provide a direction for future work that
aims for the development of on-the-fly heuristics that rely on
estimates of long-term future behavior, combined with short-
term (next interval) estimates, to determine policies for an
adaptive or configurable architecture.

V. CONCLUSIONS

This work shows that the EDP and ED�P metrics can
exhibit the best-worst behavior (BWB) and can therefore lead

2

2.5

3

3.5

4

4.5

5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x (fraction of fast intervals)

En
er

gy
-D

el
ay

 P
ro

du
ct

 (k
2 et

)

P1
P2
dual-core

Fig. 5. EDP for a hypothetical interval behavior

to inferior performance. This happens when an adaptive or
configurable architecture must make decisions at intervals on
how to configure the architecture for the next interval. This
has implications for virtually any adaptive or configurable
power optimization, which would include most optimizations
proposed so far by the architecture community.

This work also shows that to establish the power effi-
ciency limits of an adaptive design requires complete and
future knowledge of application behavior. Furthermore, it is
suggested that establishing optimality, even with complete
knowledge, is not trivial.

To avoid BWB when comparing designs using the EDP
and ED�P metrics, researchers and designers should not use
per-interval (or per benchmark) calculations of these metrics.
New policies need to be used that either try to optimize other
metrics, or that use more global information to better estimate
one interval’s impact on the global EDP (or other global
metric).

Finally, this paper points to two directions for future work.
One is to develop off-line computationally efficient algorithms
or heuristics that can determine or approximate the optimal
power efficiency. Under certain conditions (regarding the
statistical properties of the terms �� and �� of the interval
behavior) it may be possible to establish the optimal power
efficiency. The other direction is to develop on-the-fly heuris-
tics that improve power efficiency decisions.

REFERENCES

[1] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A Frameowrk for
Architectural-Level Power Analysis and Optimization,” in 27th Interna-
tional Symposium on Computer Architecture, June 2000, pp. 83–94.

[2] D. Brooks, P. Bose, S. Schuster, H. Jacobson, P. Kudva, A. Buyuk-
tosunoglu, J.-D. Wellman, V. V. Zyuban, M. Gupta, and P. W. Cook,
“Power-Aware Microarchitecture: Design and Modeling Challenges for
Next-Generation Microprocessors,” IEEE Micro, vol. 20, no. 6, pp. 26–
44, November/December 2000.

[3] A. P. Chandrakasan, S. Sheng, and R. W. Brodersen, “Low-power Digital
CMOS Design,” IEEE Journal of Solid State Circuits, vol. 27, no. 4, pp.
473–484, April 1992.

[4] M. Horowitz, T. Indermaur, and R. Gonzalez, “Low Power Digital
Design,” in IEEE International Symposium on Low Power Electronics,
October 1994, pp. 8–11.

[5] R. Kumar, K. Farkas, N. Jouppi, P. Ranganathan, and D. Tullsen, “Single-
ISA Heterogeneous Multi-Core Architectures: The Potential for Processor
Power Reduction,” in 36th International Symposium on Microarchitec-
ture, December 2003, pp. 81–92.

[6] ——, “Processor Power Reduction Via Single-ISA Heterogeneous Multi-
Core Architectures,” Computer Architecture Letters, vol. 2, April 2003.

